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Abstract

This paper focuses on a comparison between displacement-based and force-based elements for static and dynamic

response sensitivity analysis of frame type structures. Previous research has shown that force-based frame elements are

superior to classical displacement-based elements enabling, at no significant additional computational costs, a drastic

reduction in the number of elements required for a given level of accuracy in the simulated response. The present work

shows that this advantage of force-based over displacement-based elements is even more conspicuous in the context of

gradient-based optimization methods, which are used in several structural engineering sub-fields (e.g., structural opti-

mization, structural reliability analysis, finite element model updating) and which require accurate and efficient compu-

tation of structural response and response sensitivities to material and loading parameters. The two methodologies for

displacement-based and force-based element sensitivity computations are compared. Three application examples are

presented to illustrate the conclusions. Material-only non-linearity is considered. Significant benefits are found in using

force-based frame element models for both response and response sensitivity analysis in terms of trade-off between

accuracy and computational cost.
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1. Introduction

In recent years, great advances in the non-linear analysis of frame structures were led by the development

of force-based elements, which have been found superior to classical displacement-based elements in tracing

material non-linearities such as those encountered in steel, reinforced concrete, and composite frame struc-
tures (see [12–15]). The state-of-the-art in computational simulation of frame structures subjected to static

and dynamic loads is in the non-linear domain to capture the complex behavior of structural systems when

approaching their failure range.

Maybe even more important than the simulated non-linear response of a frame structure is its sensitivity

to various geometric, mechanical, and material properties defining the structure and to loading parameters.

Significant research has been devoted to the general problem of design sensitivity analysis (see [1,2,16,17]).

Consistent finite element response sensitivity analysis methods are already well established for displace-

ment-based finite elements (see [4,6,10,18]).
More recently, a procedure for response sensitivity computation using force-based frame elements has

been developed [5] by the authors. This new procedure allows the use of force-based frame elements as a

powerful simulation tool in applications which require finite element response sensitivity analysis results.

Finite element response sensitivities represent an essential ingredient for gradient-based optimization meth-

ods needed in structural reliability analysis, structural optimization, structural identification, and finite ele-

ment model updating (see [7,10]).

This paper presents a careful comparison between the response sensitivity computation methodologies

for force-based and displacement-based frame elements in the context of materially-non-linear-only ana-
lysis. Both material and discrete loading parameters are considered. Three application examples involving

quasi-static and dynamic loadings illustrate the different features of the two formulations in terms of com-

putational effort and accuracy. Consistent finite element response sensitivities are compared with analytical

(exact) when available. Conclusions are drawn about the relative merits of the displacement-based and

force-based approaches for finite element response sensitivity analysis.
2. Response sensitivity analysis at the structure level

The computation of finite element response sensitivities to material and loading parameters requires

extension of the finite element algorithms for response computation only. Let r(t) denote a generic scalar

response quantity (displacement, acceleration, local or resultant stress, etc.). By definition, the sensitivity

of r(t) with respect to the material or loading parameter h is expressed mathematically as the (absolute) par-

tial derivative of r(t) with respect to the variable evaluated at h = h0, i.e., or(t)/ohjh=h0 where h0 denotes the
nominal value taken by the sensitivity parameter h for the finite element response analysis.

In the sequel, following the notation proposed by Kleiber [10], the scalar response quantity
r(#) = r(f(#),#) depends on the parameter vector # (defined by n time-independent sensitivity parameters,

i.e., # = [h1, . . . ,hn]
T), both explicitly and implicitly through the vector function f(#). It is assumed that dr

d#

denotes the sensitivity gradient or total derivative of r with respect to #; dr
dhi

is the absolute partial derivative

of the argument r with respect to the scalar variable hi, i = 1, . . . ,n, (i.e., the derivative of the quantity r with

respect to the parameter hi considering explicit and implicit dependencies), while or
ohi

jz is the partial deriva-
tive of r with respect to parameter hi when the vector of variables z is kept constant/fixed. In the particular,

but important case in which z = f(#), the expression or
ohi

jz reduces to the partial derivative of r considering

only the explicit dependency of r on parameter hi. For # = h1 = h (single sensitivity parameter case), the
adopted notation reduces to the usual elementary calculus notation. The derivations in the sequel consider

the case of a single (scalar) sensitivity parameter h without loss of generality, due to the uncoupled nature of

the sensitivity equations with respect to multiple sensitivity parameters.



M. Barbato, J.P. Conte / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1479–1512 1481
It is assumed herein that the response of a frame type structure is computed using a general-purpose non-

linear finite element analysis program based on the direct stiffness method, employing suitable numerical

integration schemes at both the structure and the element level. At each time step, after convergence of

the incremental-iterative response computation, the consistent response sensitivities are calculated. Accord-

ing to the direct differentiation method (DDM) (see [4–6]), this requires the exact differentiation of the finite
element numerical scheme for the response computation (including the numerical integration scheme for

the material constitutive laws) with respect to the sensitivity parameter h in order to obtain the ‘‘exact’’ sen-

sitivities of the computationally simulated system response 1. The DDM consists in computing first the con-

ditional derivatives of the element and material history/state variables, forming the right-hand-side (RHS)

of the response sensitivity equation at the structure level, solving it for the nodal displacement response sen-

sitivities and updating the unconditional derivatives of all the history/state variables. The response sensitiv-

ity computation algorithm affects the various hierarchical layers of finite element response calculation,

namely: (a) the structure level, (b) the element level, (c) the section level, and (d) the material level.
After spatial discretization using the finite element method, the equations of motion of a materially non-

linear-only structural system take the form of the following non-linear matrix differential equation:
1 Th

system

equatio
MðhÞ€uðt; hÞ þ CðhÞ _uðt; hÞ þ Rðuðt; hÞ; hÞ ¼ Fðt; hÞ; ð1Þ

where t = time, h = scalar sensitivity parameter (material or loading variable), u(t) = vector of nodal dis-

placements, M = mass matrix, C = damping matrix, R(u, t) = history dependent internal (inelastic) resisting

force vector, F(t) = applied dynamic load vector, and a superposed dot denotes one differentiation with re-
spect to time.

We assume without loss of generality that the time continuous-spatially discrete equation of motion (1)

is integrated numerically in time using the well-known Newmark-b time-stepping method of structural

dynamics [3], yielding the following non-linear matrix algebraic equation in the unknowns un+1 = u(tn+1):
Wðunþ1Þ ¼ eFnþ1 �
1

bðDtÞ2
Munþ1 þ

a
bðDtÞCunþ1 þ Rðunþ1Þ

" #
¼ 0; ð2Þ
where
eFnþ1 ¼ Fnþ1 þM
1

bðDtÞ2
un þ

1

bðDtÞ _un � 1� 1

2b

� �
€un

" #

þ C
a

bðDtÞ un � 1� a
b

� �
_un � ðDtÞ 1� a

2b

� �
€un

� �
; ð3Þ
a and b are parameters controlling the accuracy and stability of the numerical integration algorithm and Dt
is the time increment. Eq. (2) represents the set of non-linear algebraic equations for the unknown response

quantities un+1 that has to be solved at each time step [tn, tn+1]. In general, the subscript (. . .)n+1 indicates
that the quantity to which it is attached is evaluated at discrete time tn+1.

We assume that un+1 is the converged solution (up to some iteration residuals satisfying a specified tol-

erance usually taken in the vicinity of the machine precision) for the current time step [tn, tn+1]. Then, we

differentiate Eq. (2) with respect to h using the chain rule, recognizing that R(un+1) = R(un+1(h),h) (i.e.,

the structure inelastic resisting force vector depends on h both implicitly, through un+1 and explicitly), which

yields the following response sensitivity equation at the structure level:
e computationally simulated system response is itself an approximation of the exact but unknown system response. The exact

response would require the exact solution of the (time continuous–space continuous) governing non-linear partial differential

ns for the physical model of the structure under consideration.
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1

bðDtÞ2
Mþ a

bðDtÞCþ ðKstat
T Þnþ1

" #
dunþ1

dh
¼ � 1

bðDtÞ2
dM

dh
þ a
bðDtÞ

dC

dh

 !
unþ1 �

oRðunþ1ðhÞ; hÞ
oh

����
unþ1

þ deFnþ1

dh
; ð4Þ
where
deFnþ1

dh
¼ dFnþ1

dh
þ dM

dh
1

bðDtÞ2
un þ

1

bðDtÞ _un � 1� 1

2b

� �
€un

 !

þM
1

bðDtÞ2
dun

dh
þ 1

bðDtÞ
d _un
dh

� 1� 1

2b

� �
d€un
dh

" #

þ dC

dh
a

bðDtÞ un � 1� a
b

� �
_un � ðDtÞ 1� a

2b

� �
€un

� �
þ C

a
bðDtÞ

dun

dh
� 1� a

b

� �
d _un
dh

� ðDtÞ 1� a
2b

� �
d€un
dh

� �
: ð5Þ
The term ðKstat
T Þnþ1 in Eq. (4) denotes the static consistent tangent stiffness matrix of the structure at time

tn+1. The second term on the RHS of Eq. (4) represents the partial derivative of the internal resisting force

vector, R(un+1), with respect to sensitivity parameter h under the condition that the displacement vector un+1
remains fixed, and is computed through direct stiffness assembly of the element resisting force derivatives as
oRðunþ1ðhÞ; hÞ
oh

����
unþ1

¼
XN el

e¼1

ðAðeÞ
b ÞT � CðeÞT

REZ � CðeÞT
ROT � CðeÞT

RBM � oQnþ1

oh

����
qnþ1

 !
: ð6Þ
In the above equation, A
ðeÞ
b is the Boolean localization matrix for element ‘‘e’’; CðeÞ

REZ;C
ðeÞ
ROT, and CðeÞ

RBM are
kinematic transformation matrices to account for rigid end zones (REZ), rotation from global to local ref-

erence system (ROT), and rigid body modes (RBM), respectively; qn+1 and Qn+1 denote the vectors of basic

element deformations and forces, respectively; and Nel denotes the number of frame elements in the struc-

tural model [5].

The above formulation, derived explicitly for dynamic response sensitivity analysis, contains the quasi-

static case as a particular case, obtained by simply equating to zero in Eqs. (2)–(5) all terms containing the

mass and damping matrices as well as their derivatives with respect to the sensitivity parameter h.
3. Response sensitivity analysis at the element level

Within the direct stiffness assembly formulation at the global/structure level, at every time/load step, the

element inherits from the structure level the element nodal displacements p, which are transformed into the

basic element deformations q, and returns the nodal resisting force vector P ¼ CT
REZ � CT

ROT � CT
RBM �Q and

the element consistent tangent stiffness matrix in global coordinates. The element interacts with the section

level (or integration point level) transforming the element nodal deformations q into section deformations d
and computing the basic element resisting forces Q from the section forces D, themselves obtained through

the material constitutive integration scheme. In a displacement-based formulation, the relationship between

element deformations and section deformations on one hand and between element forces and section forces

on the other hand is straightforward. In contrast, in the force-based formulation, there is no simple direct

relation between the section deformations d and the basic element deformations q, and an iterative proce-
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dure (although a non-iterative one can also be used [12]) is used to perform the element state determination

[14]. This fact complicates the derivation of the sensitivities of force-based element response quantities as

compared to the case of displacement-based elements [6]. While for displacement-based elements, the deriv-

ative of the section deformations-element deformations relation is straightforward, since the section defor-

mations depend on the sensitivity parameter h only implicitly through the element deformations q(h), i.e.,
d = d(x,q(h)) where x denotes the coordinate along the beam axis, for force-based elements, the section

deformations are function of h both explicitly and implicitly, i.e., d = d(x,q(h),h) [5].
3.1. Displacement-based element response sensitivity computation

In a displacement-based element, the relationships between element and section deformations on one

hand, and between element and section forces on the other hand are given by
dðx; hÞ ¼ BðxÞ � qðhÞ ðcompatibility in strong formÞ; ð7Þ

QðhÞ ¼
Z L

0

BTðxÞ �Dðx; hÞ � dx ðequilibrium in weak formÞ; ð8Þ
where B(x) is a transformation matrix between element deformations and section deformations, which is
independent of the sensitivity parameter h.

After introducing the normalized coordinate n (with �1 6 n 6 1) and performing numerical integration,

Eqs. (7) and (8) become
dðni; hÞ ¼ BðniÞ � qðhÞ ði ¼ 1; . . . ; nIPÞ; ð9Þ

QðhÞ ¼ L
2
�
XnIP
i¼1

fBTðniÞ �Dðni; hÞ � wig; ð10Þ
where ni and wi denote the sampling points and their integration weights, respectively, while nIP represents

the number of integration points along the beam axis.
Differentiation of the above relations is straightforward and yields
ddðni; hÞ
dh

¼ BðniÞ �
dqðhÞ
dh

ði ¼ 1; . . . ; nIPÞ; ð11Þ

dQðhÞ
dh

¼ L
2
�
XnIP
i¼1

BTðniÞ �
dDðni; hÞ

dh
� wi

� �
: ð12Þ
Therefore, the element response sensitivity computation is easily accomplished using the following

procedure (where the dependence of the various quantities on h is not shown explicitly for the sake of
brevity).
3.1.1. Conditional derivatives (for qn+1 fixed)

(1) Set derivatives of the basic element deformations qn+1 to zero as1
oqnþ1

oh

����
qnþ1

¼ 0: ð13Þ
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It follows that:
odnþ1ðniÞ
oh

����
qnþ1

¼ BðniÞ �
oqnþ1

oh

����
qnþ1

¼ 0 ði ¼ 1; . . . ; nIPÞ: ð14Þ
(2) From the constitutive law integration scheme (during loop over the element integration points for pre-

response sensitivity calculations), compute oDnþ1ðniÞ
oh

���
qnþ1

ði ¼ 1; . . . ; nIPÞ.
(3) Integrate the conditional derivatives of the sections forces over the element as
oQnþ1

oh

����
qnþ1

¼ L
2
�
XnIP
i¼1

BTðniÞ �
oDnþ1ðniÞ

oh

����
qnþ1

� wi

( )
: ð15Þ
(4) Form the RHS of the response sensitivity equation at the structure level, Eq. (4), through direct stiff-

ness assembly.
(5) Solve Eq. (4) for the nodal response sensitivities, dunþ1

dh .

3.1.2. Unconditional derivatives

(1) Compute unconditional derivatives
dqnþ1

dh from the solution of the response sensitivity equation at the

structure level, Eq. (4), as
dqnþ1

dh
¼ CðeÞ

RBM � CðeÞ
ROT � CðeÞ

REZ � dpnþ1

dh
¼ CðeÞ

RBM � CðeÞ
ROT � CðeÞ

REZ � AðeÞ
b

dunþ1

dh
ðe ¼ 1; . . . ;N elÞ: ð16Þ
The section deformation sensitivities are given by
ddnþ1ðniÞ
dh

¼ BðniÞ �
dqnþ1

dh
ði ¼ 1; . . . ; nIPÞ: ð17Þ
(2) From the constitutive law integration scheme, compute and save the unconditional derivatives of the

material and section history/state variables drnþ1ðniÞ
dh and compute dDðniÞ

dh .

(3) Integrate the derivatives of the section forces over the element to obtain
dQ

dh
¼ L

2
�
XnIP
i¼1

BTðniÞ �
dDðniÞ
dh

� wi

� �
ð18Þ
3.2. Force-based element response sensitivity computation

In the most general case, the dependence of section deformations, d, and section forces, D, on the ele-

ment deformations, q, and sensitivity parameter, h, can be expressed as
dðx; hÞ ¼ dðx; qðhÞ; hÞ; ð19Þ

Dðx; hÞ ¼ Dðdðx; qðhÞ; hÞ; hÞ; ð20Þ

Using the chain rule of differentiation and referring to the normalized coordinate n, we determine the

sensitivity of d and D to h as
ddðni; hÞ
dh

¼ od

oq

����
h

� dqðhÞ
dh

þ od

oh

����
q

¼ Bðni; hÞ �
dqðhÞ
dh

þ od

oh

����
q

; ð21Þ
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dDðni; hÞ
dh

¼ ksðni; hÞ �
ddðni; hÞ

dh
þ oD

oh

����
d

¼ ksðni; hÞ � Bðni; hÞ �
dqðhÞ
dh

þ od

oh

����
q

" #
þ oD

oh

����
d

; ð22Þ
where
Bðni; hÞ ¼
od

oq

����
h

¼ od

oD

����
h

� oD
oQ

����
h

� oQ
oq

����
h

¼ fsðni; hÞ � bðniÞ � kðeÞ
T ðhÞ; ð23Þ

ksðni; hÞ ¼
oD

od

����
h

¼ ½fsðni; hÞ��1
: ð24Þ
In the above equations, ks and fs denote the section tangent stiffness and flexibility matrices, respectively,

and kT is the element tangent stiffness matrix. Differentiating the equilibrium equations in strong form,

D(ni,h) = b(ni) Æ Q(h) (where b denotes the matrix of internal force interpolation functions), with respect

to parameter h, assuming no element distributed loads, yields
dDðni; hÞ
dh

¼ bðniÞ �
dQðhÞ
dh

: ð25Þ
Compatibility between basic element deformations q and section deformations d (in weak form through

the principle of virtual forces) is expressed, using the normalized coordinate n and performing numerical

integration, as
qðhÞ ¼ L
2
�
XnIP
i¼1

fbTðniÞ � dðni; hÞ � wig: ð26Þ
Differentiating the above relation with respect to parameter h, we obtain
dqðhÞ
dh

¼ L
2
�
XnIP
i¼1

bTðniÞ �
ddðni; hÞ

dh
� wi

� �
: ð27Þ
It is necessary to derive both conditional (with q fixed) and unconditional derivatives of the basic element

forces, Q, and section deformations, d(ni), and the unconditional derivatives of all other history/ state var-

iables at the element, section, and material levels, respectively. For this purpose, we merge Eqs. (22) and

(25) to obtain
ksðni; hÞ �
ddðni; hÞ

dh
� bðniÞ �

dQðhÞ
dh

¼ �oDðni; hÞ
oh

����
d

: ð28Þ
Equations for conditional derivatives of Q and d are obtained from Eqs. (27) and (28) by substituting
ddðniÞ
dh with odðniÞ

oh jq and dQ
dh with

oQ
oh jq and setting oq

oh jq ¼ 0. Eqs. (27) and (28) provide a system of (2nIP + 3) equa-

tions with (2nIP + 3) scalar unknowns. These scalar unknowns are odðniÞ
oh jq or

ddðniÞ
dh (two unknowns for each

integration point), and oQ
oh jq or dQ

dh (three unknowns for each element), for conditional and unconditional

derivatives, respectively. The conditional derivatives oDðniÞ
oh jd on the RHS of Eq. (28) can be obtained

through conditional differentiation of the constitutive law integration scheme at the numerical integration

point level. In Eqs. (21)–(28), i = 1, . . . ,nIP.
The response sensitivity computation scheme for force-based frame element is described in the sections

below (where the dependence of the various quantities on h is not shown explicitly).



1486 M. Barbato, J.P. Conte / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1479–1512
3.2.1. Conditional derivatives (for qn+1 fixed)

(1) Set derivatives of the basic element deformations qn+1 and section deformations dn+1(ni) to zero (i.e.,

considering qn+1 and dn+1(ni), respectively, as fixed quantities) as
oqnþ1

oh

����
qnþ1

¼ 0; ð29Þ

odnþ1ðniÞ
oh

����
dnþ1

¼ 0 ði ¼ 1; . . . ; nIPÞ; ð30Þ
(2) From the constitutive law integration scheme (during loop over the element integration points for pre-

response sensitivity calculations), compute oDnþ1ðniÞ
oh jdnþ1

and then set up the following linear system of

(2nIP + 3) equations (after looping over the integration points):
ks;nþ1ðniÞ �
odnþ1ðniÞ

oh

����
qnþ1

� bðniÞ �
oQnþ1

oh

����
qnþ1

¼ �oDnþ1ðniÞ
oh

����
dnþ1PnIP

i¼1

bTðniÞ �
odnþ1ðniÞ

oh

����
qnþ1

� wi

( )
¼ 0

8>>>><>>>>: ði ¼ 1; . . . ; nIPÞ: ð31Þ
(3) Solve Eq. (31) for odnþ1ðniÞ
oh jqnþ1

and
oQnþ1

oh jqnþ1
ði ¼ 1; . . . ; nIPÞ.

(4) Form the RHS of the response sensitivity equation at the structure level, Eq. (4), through direct stiff-

ness assembly.

(5) Solve Eq. (4) for the nodal response sensitivities, dunþ1

dh .

3.2.2. Unconditional derivatives

(1) Compute unconditional derivative
dqnþ1

dh from the solution of the response sensitivity equation at the

structure level, Eq. (4), as
dqnþ1

dh
¼ CðeÞ

RBM � CðeÞ
ROT � CðeÞ

REZ � dpnþ1

dh
¼ CðeÞ

RBM � CðeÞ
ROT � CðeÞ

REZ � AðeÞ
b

dunþ1

dh
ðe ¼ 1; . . . ;N elÞ: ð32Þ
(2) Using the conditional derivatives oDnþ1ðniÞ
oh jdnþ1

computed during the pre-response sensitivity calculation

phase, set up the following linear system of (2nIP + 3) equations:
ks;nþ1ðniÞ �
ddnþ1ðniÞ

dh
� bðniÞ �

dQnþ1

dh
¼ �oDnþ1ðniÞ

oh

����
dnþ1

L
2
�
XnIP
i¼1

bTðniÞ �
ddnþ1ðniÞ

dh
� wi

� �
¼ dqnþ1

dh

8>>>><>>>>: ði ¼ 1; . . . ; nIPÞ: ð33Þ
(3) Solve Eq. (33) for the unconditional derivatives ddnþ1ðniÞ
dh ði ¼ 1; . . . ; nIPÞ, and dQnþ1

dh .

(4) Perform a loop over the frame element integration points, entering with ddnþ1ðniÞ
dh in the differentiated con-

stitutive law integration scheme, compute and save the unconditional derivatives of the material and
section history/state variables drnþ1ðniÞ

dh . These unconditional derivatives are needed to compute the con-

ditional derivatives required for response sensitivity computations at the next time step, tn+2, namely,
oDnþ2ðniÞ

oh jdnþ2
; odnþ2ðniÞ

oh jqnþ2
and

oQnþ2

oh jqnþ2
.
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3.3. Implementation in a general-purpose non-linear finite element structural analysis program

For comparison purposes, the above formulations for response sensitivity analysis using displacement-

based and force-based frame elements were implemented in a general-purpose finite element structural

analysis program, namely FEDEASLab Release 2.2 [8]. FEDEASLab is a Matlab [11] toolbox suitable
for linear and non-linear, static and dynamic structural analysis, which has the advantage to provide a gen-

eral framework for physical parameterization of finite element models and response sensitivity computation

[9].

One of the most important features of FEDEASLab is its strict modularity, that keeps separate the

different hierarchical levels encountered in structural analysis (i.e., structure, element, section and material

levels). Therefore, the use of displacement-based or force-based elements is not dependent or related to the

use of any section model and/or material constitutive law (properly implemented with provisions for

sensitivity analysis) and their present comparison is strictly and uniquely based on the different features
of their response sensitivity computation scheme and performance in terms of accuracy and computational

cost.

Flow-charts comparing the computer implementation of the response sensitivity analysis for the two dif-

ferent elements are presented in Figs. 1 and 2. It is worth noting two main differences between displace-

ment-based [6] and force-based frame elements [5]: (a) in the displacement-based formulation, there is no

need to solve a linear system of equations at the element level in order to obtain the conditional and uncon-

ditional derivatives of the nodal element forces
oQnþ1

oh jqnþ1
and

dQnþ1

dh , respectively; and (b) while for displace-

ment-based elements, the condition qn+1 fixed is equivalent to the condition dn+1(ni) (i = 1,2, . . . ,nIP) fixed,
for force-based elements, it is necessary to compute the conditional derivatives of the history/state variables

imposing dn+1(ni) fixed in order to obtain the conditional (for qn+1 fixed) and unconditional derivatives of
the nodal element forces.
4. Application examples

4.1. Application example: cantilever beam with distributed plasticity

The first test structure considered in this paper is the cantilever W21 · 50 steel I-beam 10m in
length shown in Fig. 3. The geometric properties of the beam cross-section are: A = 9.484 · 10�3

[m2] (cross-section area) and I = 4.096 · 10�4 [m4] (moment of inertia about strong axis) (see Fig.

3). Its initial yield moment is My0 = 384.2 [kNm] and a 9.09% post-yield to initial flexural stiffness

ratio is assumed. The axial behavior is assumed linear elastic, while the flexural behavior is modeled

by a 1-D J2 plasticity section constitutive law [6] with the following material parameters: Young�s
modulus E = 2 · 108 [kPa], and isotropic and kinematic hardening moduli, Hiso = 0 [kPa],

Hkin = 2 · 107 [kPa], respectively. It is noteworthy that the 1-D J2 plasticity for zero isotropic hard-

ening reduces to the well known bi-linear constitutive model, with fixed post-yield stiffness (see Fig.
4(a)).

The simple load case of a quasi-static, monotonically increasing point load applied at the tip of the can-

tilever is considered, for which closed form solutions for both response and response sensitivities to material

parameters can be easily derived through applying the principle of virtual forces (see Fig. 4). As response

quantities, we considered the vertical tip displacement U (global response quantity) and the cumulative

plastic curvature vp at the fixed end of the cantilever (local response quantity). The analytical solutions

for these two response quantities have been derived as



Fig. 1. Flow chart for the numerical computation of the response sensitivity with a displacement-based frame element: (a) conditional

derivatives and (b) unconditional derivatives.
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U ¼

PL3

3EI
; if P 6

My0

L
;

PL3

3EI
Hkin þ E
Hkin

� �
� My0L2

2HkinI
þ

M3
y0

6P 2HkinI
; if P >

My0

L
:

8>>><>>>: ð34Þ

vp ¼
0; if P 6

My0

L
;

PL�My0

HkinI
; if P >

My0

L
:

8>><>>: ð35Þ



Fig. 2. Flow chart for the numerical computation of the response sensitivity with a force-based frame element: (a) conditional

derivatives and (b) unconditional derivatives.
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The vertical tip displacement sensitivities to material parameters E, My0, and Hkin are given by
dU
dE

¼ � PL3

3E2I
; ð36Þ

dU
dMy0

¼
0; if P 6

My0

L
;

� 1

2HkinI
L2 � My0

P

� �2
" #

; if P >
My0

L
;

8>>><>>>: ð37Þ



P , U

L = 10 m

16.59 cm

52
.9

1 
cm

0.97 cm

1.36 cm

Fig. 3. Cantilever beam model: geometry, applied load and global response quantity.

Fig. 4. Cantilever beam model: (a) moment–curvature relation (J2 plasticity), (b) actual curvature (v) distribution, (c) computation of

vertical tip displacement (Mv(x): virtual moment) and (d) computation of cumulative plastic curvature at the fixed end.
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dU
dHkin

¼
0; if P 6

My0

L
;

� 1

6H 2
kinI

2PL3 � 3My0L2 þ
M3

y0

P 2

" #
; if P >

My0

L
:

8>>><>>>: ð38Þ
The fixed end cumulative plastic curvature sensitivities to material parameters E, My0, and Hkin are derived

as
dvp

dE
¼ 0; ð39Þ

dvp

dMy0
¼

0; if P 6
My0

L
;

� 1

HkinI
; if P >

My0

L
;

8>><>>: ð40Þ

dvp

dHkin

¼
0; if P 6

My0

L
;

� PL�My0

H 2
kinI

; if P >
My0

L
:

8>><>>: ð41Þ
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Convergence analysis studies for the response quantities considered and their sensitivities to material

parameters are performed using different meshes of force-based (F-B) elements (Figs. 5–12, part (a)) and

of displacement-based (D-B) elements (Figs. 5–12, part (b)). The frame elements used follow Euler–Bern-

oulli beam theory (i.e., beam cross-sections remain plane and perpendicular to the beam centroidal axis)

with linear geometry (i.e., small deformations and small strains). In the case of the D-B element, the com-
mon third-degree Hermitian polynomials are used as shape functions for the transverse displacement field,

while the axial displacement shape functions are linear. In the case of the F-B element, the internal bending

moment and axial force are interpolated exactly through a linear and a constant force field shape function,

respectively, in the absence of element distributed loads.
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The finite element meshes considered for the F-B element models of the cantilever structure are: (a) one

element with five Gauss–Lobatto (G–L) integration points along the length of the element, (b) one element

with 10 G–L points, (c) two elements with 10 G–L points each and (d) four elements with 10 G–L points

each. Those considered for the D-B element models of the cantilever beam are: (a) one element with five G–

L points, (b) two elements with five G–L points each, (c) four elements with five G–L points each and (d) 10

elements with five G–L points each. The choice of the meshes was based on the objective of making, from

the two sets of models (F-B and D-B), fair comparisons between the F-B and D-B results in terms of accu-

racy and computational effort. The selection of different numbers of Gauss–Lobatto integration points for
the more refined meshes of the two kinds of elements is justified by the fact that increasing the number of

integration points along the length of a F-B element improves significantly the accuracy of the results, at a

slightly lower computational effort than by augmenting the number of F-B elements with a constant num-

ber of integration points per element. This is not the case of D-B elements, for which the error is produced

mainly by the displacement interpolation shape functions that do not represent exactly the solution of
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non-linear problems, and not by the approximate numerical integration. Thus in the case of D-B element

models, for improving the accuracy of the results, it is more advantageous to increase the number of ele-

ments for a fixed total number of integration points. In the sequel, the 1 F-B element model with 10 G–L

points is used as reference finite element model.
Figs. 5 and 6 show the convergence analysis results for the global and local response quantities, respec-

tively. It is evident that the convergence (with increasing resolution of the finite element mesh) of the F-B

element models toward the exact solution is much faster than the convergence of the D-B element models.

Furthermore, for the D-B elements the local response results are less accurate than the global response re-

sults, while for the F-B elements the same level of accuracy is achieved for the global and local responses. It

is observed that convergence to the exact solution is practically achieved for both the global and local re-

sponses using one F-B element with 10 G–L points, while four D-B elements (five G–L points each) are



0 1 2 3 4 5 6 7
x 104

_0.07

_0.06

_0.05

_0.04

_0.03

_0.02

_0.01

0

exact solution
1 el – 5 G–L points
1 el – 10 G–L points
2 el – 10 G–L points
4 el – 10 G–L points

0 1 2 3 4 5 6 7
x 104

_0.07

_0.06

_0.05

_0.04

_0.03

_0.02

_0.01

0

exact solution
1 el – 5 G–L points
2 el – 5 G–L points
4 el – 5 G–L points
10 el – 5 G–L points

(a) (b)

d
p

d
M

y
0

----
----

----
-

M
y

0
   

[m
   

]1–

Applied  force   P  [N]

d
p

d
M

y
0

----
----

----
-

M
y

0
   

[m
   

]1–
.

Applied  force   P  [N]

χ χ
.

Fig. 11. Local response sensitivity of the cantilever beam models to the initial yield moment My0: (a) force-based element models and

(b) displacement-based element models.

0 1 2 3 4 5 6 7
x 10 4

_0.04

_0.035

_0.03

_0.025

_0.02

_0.015

_0.01

_0.005

0

exact solution
1 el – 5 G–L points
1 el – 10 G–L points
2 el – 10 G–L points
4 el – 10 G–L points

0 1 2 3 4 5 6 7
x 10 4

_0.04

_0.035

_0.03

_0.025

_0.02

_0.015

_0.01

_0.005

0

exact solution
1 el – 5 G–L points
2 el – 5 G–L points
4 el – 5 G–L points
10 el – 5 G–L points

(a) (b)

d
p

dH
k

in
----

----
----

---
H

k
in

   
[m

   
]1–

Applied force P  [N]  

d
p

dH
k

in
----

----
----

---
H

k
in

   
[m

   
]1–

.

Applied force P  [N]  

χ χ
.

Fig. 12. Local response sensitivity of the cantilever beam models to the kinematic hardening modulus Hkin: (a) force-based element

models and (b) displacement-based element models.

1494 M. Barbato, J.P. Conte / Comput. Methods Appl. Mech. Engrg. 194 (2005) 1479–1512
needed to predict accurately the global response quantity and 10 D-B elements (five G–L points each) pro-

duce fairly accurate results (but not as accurate as one F-B element with 10 G–L points) for the local

response.

Figs. 7–9 display the tip displacement sensitivities to material parameters E, My0, and Hkin, respectively.

The convergence trends are very similar to the ones obtained for the tip displacement response itself for

both F-B and D-B element models. The sensitivities of the local response parameter vp to material para-
meters E,My0, and Hkin are displayed in Figs. 10–12, respectively. Again, the convergence trends are very

similar to the ones found for the local response itself. Convergence to the exact solution is already achieved

using one F-B element with five G–L points, while a 10 D-B element model with five G–L points per ele-

ment produces sensitivity results with a non-negligible deviation from the exact solution.

It is noteworthy that small relative errors in the finite element response results can magnify into large

relative errors in the response sensitivity results. This important remark is illustrated by comparing parts

(a) and (b) of Figs. 6 and 11. In particular, the 10 D-B element model (with five G–L points/element) pro-

duces very accurate global response and global response sensitivity results (see parts (b) of Figs. 5, 7–9), and
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also more than satisfactory results for the cumulative plastic curvature at the fixed end of the cantilever

beam (see Fig. 6(b)), for which the error measure defined as the ratio between the maximum absolute error

and the maximum absolute value is max j ðvpÞFE � ðvpÞexact j =max j ðvpÞexact j¼ 0:0261. Nevertheless, the

same model produces large errors in the local response sensitivity to the initial yield moment, My0, at

the load steps following the first yield excursion at the fixed end section, with an error measure of

max j ð dvp

dMy0
ÞFE � ð dvp

dMy0
Þexact j =max j ð dvp

dMy0
Þexact j¼ 0:8889. For the reference model (one F-B element with

10 G–L points), these error measures are max j ðvpÞFE � ðvpÞexact j =max j ðvpÞexact j¼ 1:8� 10�15 and

max j ð dvp

dMy0
ÞFE � ð dvp

dMy0
Þexact j =max j ð dvp

dMy0
Þexact j¼ 9:78� 10�14, respectively. The ratio of the maximum

absolute error to the maximum absolute value has been preferred to other error measures (such as the max-

imum relative error) in order to avoid accounting for large errors caused by very small values of the quan-
tity in question.

Fig. 13 provides the relative computing time (RCT), defined as the ratio of the computing time for a

given finite element model to that of the reference model, for the various finite element models considered

in this study. The model consisting of 1 F-B element with 10 G–L integration points is used as reference

model since it achieves the best compromise between accuracy and computational effort. Among the

D-B element models, an accuracy similar to that of the reference model is achieved by the four ele-

ments—five G–L points model (RCT = 1.33) for the response quantities and by the 10 elements—five

G–L points model (RCT = 3.11) for the response sensitivities, excluding the fixed-end cumulative plastic
curvature sensitivity to the initial yield moment dvp

dMy0
as discussed earlier. Reducing the error in the compu-

tation of the latter response sensitivity using D-B elements is extremely difficult and requires very refined

meshes near the fixed-end of the cantilever beam for at least two reasons: (a) because of the non-smoothness

of the constitutive law used herein (i.e., the non-smoothness of the 1-D J2 plasticity model contributes to

magnifying further small errors in the response results into large errors in the corresponding response sen-

sitivities), and (b) because of the intrinsic error in the D-B formulation in representing the force distribution

along the element.

From this section, it can be concluded that the benefits of using F-B element models are evident: they
achieve more accurate response and response sensitivity results at a lower computational cost. The

comparative results between F-B and D-B elements obtained here for response computation are consist-

ent with those obtained by previous researchers (see [12–15]). The advantages of the force-based over

the displacement-based elements for response computation are amplified for response sensitivity

computation.
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Fig. 13. Relative computing times for the cantilever beam models (reference model taken as the one F-B element with 10 G–L points).
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4.2. Application example: statically indeterminate 2-D frame with distributed plasticity

The second structure used as application example is the single-storey, single-bay statically indeterminate

steel frame with pin supports shown in Fig. 14. The cross-section and material properties are the same as in

the previous example.
The simple case of a monotonically increasing horizontal point load applied at roof level is considered.

The resulting horizontal nodal displacement U (see Fig. 14) can be derived in closed-form from the principle

of virtual forces (dummy unit load principle) as (Fig. 15)
Fig. 15

(due to
U ¼
Z
str

vðxÞMvðxÞdxþ
Z
str

eðxÞNvðxÞdx; ð42Þ
where v(x) and e(x) denote the actual curvature and axial strain along the beam axis x, respectively, and

Mv(x) and Nv(x) represent the virtual moment and axial force, respectively, due to the dummy unit load.
In this example, we consider the roof horizontal displacement U as global response quantity and the cumu-

lative plastic curvature, vp, in the section at the top of the left column (see Fig. 14) as local response quan-

tity. The analytical solutions for these two response quantities have been derived as
L = 2 h = 8 m

h 
= 

4 
m

P, U

section
considered

Fig. 14. Statically indeterminate frame model: geometry, applied loads and global response quantity.
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symmetry of the problem, only half of the frame is represented).
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U ¼

Ph3

6EI
1þ L

2h

� �
þ PL
4EaA

1þ 2h
L

� �3
" #

; if P 6
2My0

h
;

Ph3

6EI
1þ E

Hkin

� �
� My0h

2

2HkinI
þ

2M3
y0

3P 2HkinI

" #
1þ L

2h

� �
þ PL
4EaA

1þ 2h
L

� �3
" #

; if P >
2My0

h
;

8>>>><>>>>:
ð43Þ

�vp ¼
0; if P 6

2My0

h
;

Ph� 2My0

2HkinI
; if P >

2My0

h
;

8>><>>: ð44Þ
where the Young�s modulus for the linear elastic axial behavior is referred to as Ea, while Young�s modulus

for the flexural behavior is denoted by E.

The roof horizontal displacement sensitivities to material parameters E, My0, and Hkin are derived in

closed-form from Eq. (43) as
dU
dE

¼ � Ph3

6E2I
1þ L

2h

� �
; ð45Þ

dU
dMy0

¼
0; if P 6

2My0

h
;

� 1

2HkinI
h2 � 2My0

P

� �2
" #

1þ L
2h

� �
; if P >

2My0

h
;

8>>><>>>: ð46Þ

dU
dHkin

¼
0; if P 6

2My0

h
;

� 1

6H 2
kinI

Ph3 � 3My0h
2 þ

4M3
y0

P 2

" #
1þ L

4h

� �
; if P >

2My0

h
:

8>>><>>>: ð47Þ
The sensitivities of the cumulative plastic curvature (at the cross-section shown in Fig. 14) to the same

material parameters E, My0, and Hkin are obtained in closed-form from Eq. (44) as
d�vp

dE
¼ 0; ð48Þ

d�vp

dMy0
¼

0; if P 6
2My0

h
;

� 1

HkinI
; if P >

2My0

h
;

8>><>>: ð49Þ

d�vp

dHkin

¼
0; if P 6

2My0

h
;

� Ph� 2My0

2H 2
kinI

; if P >
2My0

h
:

8>><>>: ð50Þ
It is worth noting that the contribution of the axial deformation to the horizontal roof displacement U

(very small compared to the flexural one, but not negligible) does not appear in the response sensitivities,
because they are computed with respect to the J2 plasticity constitutive law parameters, which effect only

the flexural behavior.
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The frame elements used in this second application example are the same as in the first one. The F-B

element model meshes are: (a) three elements with five G–L integration points each (one element for each

column and beam), (b) three elements with 10 G–L points each (one element for each column and beam),

(c) six elements with 10 G–L points each (two elements for each column and beam), and (d) 12 elements

with 10 G–L points each (four elements for each column and beam). The D-B element model meshes
are: (a) three elements with five G–L integration points each (one element for each column and beam),

(b) six elements with five G–L points each (two elements for each column and beam), (c) 12 elements with

five G–L points each (four elements for each column and beam), and (d) 40 elements with five G–L points

each (10 elements for each column and 20 elements for the beam). The three F-B element model with 10 G–

L points each is taken as the reference model in defining the relative computational efforts.

Also the presentation of the convergence analysis results emphasizing the comparison between F-B and

D-B element models is the same as in the previous example. Figs. 16 and 17 present results on the conver-

gence of the global and local response quantities, respectively, for increasing resolution of the finite element
mesh. Figs. 18–20 display the global response sensitivities to constitutive model parameters E, My0, and
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Hkin, while Figs. 21–23 show the local response sensitivities to these same material parameters. Finally, Fig.

24 provides the relative computing times for the finite element meshes defined above.
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The results obtained here are consistent with those obtained in the previous example. However, some

further remarks can be made from this second case study.

(a) The convergence toward the exact solution of the D-B element models is much slower than for the can-
tilever beam example, while the F-B element models provide similar accuracy in both cases. This could

be expected due to the more complex flexural behavior (i.e., change of sign of curvature) of the beam in

the frame, which is correctly captured with the force formulation, but not with the displacement

formulation.

(b) The response sensitivity convergence results of the D-B element models are even worse than

the response convergence results when comparing the cantilever beam and frame examples. Again,

response sensitivity convergence results for F-B elements are similar for both examples (e.g., local

response sensitivity results already practically converge using one 1 F-B element with five G–L points
per beam or column in both examples).

(c) A more refined mesh (not any more with a constant number of finite elements per structural element) is

required with D-B elements to achieve an accuracy approaching that of the reference model (three F–B

elements with 10 G–L points each). For this example, the D-B element model with similar accuracy to

that of the reference model is the 40 elements with five G–L points each (10 elements per column and 20

elements for the beam). This model however has a relative computing time of 4.52.

The advantage in using F-B element models (over D-B element models) for response sensitivity analysis
is even more significant than in the previous example. It is believed, from theoretical considerations and

from the above application examples, that this benefit in terms of improved accuracy at a lower computa-

tional cost increases with the complexity of the structural system being analyzed.

4.3. Application example: statically indeterminate five-storey, one-bay 2-D frame with distributed plasticity

The third test structure considered in this comparative study is a five-storey, single-bay steel moment

resisting frame, a finite element model of which is shown in Fig. 25. All columns and beams are
W21 · 50 steel I-beams with an initial yield moment of My0 = 384.2 [kNm]. A 20% post-yield to initial flex-

ural stiffness ratio is assumed. The axial behavior is assumed linear elastic, while the flexural behavior is
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described by a 1-D J2 plasticity section constitutive law (see [5,6]) with the following material parameters:

Young�s modulus E = 2 · 108 [kPa], and isotropic and kinematic hardening moduli Hiso = 0 [kPa],

Hkin = 5 · 107 [kPa], respectively. A material mass density of 8 times the mass density of steel (i.e.,
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q = 63200 [kg/m3]) is used for the beams only in order to account for typical additional masses (i.e., slabs,

floor beams, ceilings,. . .) and for the mass of the columns.

The structure is modeled using the D-B and F-B frame elements described earlier in the paper. The inertia

properties of the system are modeled through (translational) lumped masses (in both the horizontal and ver-

tical directions) applied at the nodes of the finite elements representing the beams, each element contributing
half of its total mass to each of its end nodes. No lumped masses are applied at the internal nodes of the

columns, thus obtaining finite element models with mesh independent total inertia properties. The frame
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has an initial fundamental period of 0.55s. No sources of energy dissipation (such as viscoelastic damping)

beyond hysteretic energy dissipation through inelastic flexural action are considered here.

After application of gravity loads, this frame is subjected to a non-linear response history analysis for

earthquake base excitation, taken as the balanced 1940 El Centro earthquake record scaled by a factor 3

(see Fig. 26). In this dynamic analysis, the unconditionally stable constant average acceleration method
[3] with a constant time step of Dt = 0.02s is used as time stepping scheme.

The frame element models compared here are: (a) 15 F-B elements (one frame element per column or

beam) with 10 G–L points each and (b) 60 D-B elements (four frame elements per column or beam) with

five G–L points each. The ratio of the computing time of the D-B element model over that of the F-B ele-

ment model was found to be about 1.4.

There is no closed-form solution available for the present problem. Therefore, a reference model consist-

ing of 60 F-B elements (four frame elements per column or beam) with 10 G–L points each was selected.

Convergence toward the unknown exact solution has been verified with three different meshes (15 F-B ele-
ments, 30 F-B elements and 60 F-B elements, with 10 G–L points each). The response and response sensi-

tivity results obtained from the reference model are believed to be the most accurate results. It is worth

noting that with a lumped mass modeling, the refinement of the mass discretization (even for a constant

total mass) may have a non-negligible influence on the convergence trend of the results. Further studies

are required in order to evaluate this effect and to compare the convergence results based on lumped mass

modeling with those based on consistent mass modeling of the distributed masses.

The time histories of significant global (roof horizontal displacement u5) and local (cumulative plastic cur-

vature �vp at the fixed section of the left base column, referred to as section A, see Fig. 25) response quantities
are plotted in Figs. 27 and 28. Figs. 29–31 display the roof horizontal displacement sensitivities to Young�s
modulus, E, the initial yield moment, My0, and the kinematic hardening modulus, Hkin, respectively; while

the sensitivities of the cumulative plastic curvature in section A to the material sensitivity parameters E,My0

andHkin are shown in Figs. 32–34, respectively. In Fig. 32, the sensitivity of the cumulative plastic curvature

in section A to the material sensitivity parameter E is also shown for the frame model consisting of 30 F-B
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elements with 10 G–L points each. Global and local response sensitivities to the ground motion acceleration

value at time t = 6.00 s are plotted in Figs. 35 and 36, respectively. In Figs. 27–36, insets present closer views

of the response and response sensitivity histories. Fig. 37 compares the error measures for the two response

quantities considered and their sensitivities as computed using the F-B element model (15 and 30 F-B ele-

ments with 10 G–L points each) and the D-B element model (60 D-B elements with five G–L points each).
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This figure shows that, except for response sensitivity d�vp=dE, all responses and response sensitivities con-

sidered converge towards the corresponding results obtained from the reference model when the F-B element

mesh is refined from 15 to 30 elements. For the case of the sensitivity of the cumulative plastic curvature in

section A to the material sensitivity parameter E, d�vp=dE, as shown in Fig. 32, the error for the 30 F-B ele-

ments with 10 G–L points each is smaller than the error for the 15 F-B element model, except during the time

intervals [25.5–27] s and [32–34] s of the response history. Each of the response sensitivities presented above is
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scaled by the sensitivity parameter itself (i.e., (dr/dh) Æ h) and can thus be interpreted as 100 times the change

in the response quantity due to one percent change in the sensitivity parameter. These scaled sensitivities can

therefore be used to determine the relative importance of the sensitivity parameters in regards to a given re-

sponse quantity. Fig. 38 displays the maximum absolute values of the scaled response sensitivities to the sen-

sitivity parameters considered in this study.
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The following new remarks can be made from the results described above.

(a) The computed global response quantities obtained from the two compared models are very close, while

there are substantial differences between the local response quantities computed from these models.
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(b) The global response sensitivities to material parameters, computed with the two compared models, are
very similar, with a slightly better accuracy overall for the F-B model.

(c) The local response sensitivities to material parameters computed with the F-B model are much closer to

the reference model results than those obtained from the D-B model.

(d) The D-B model provides more accurate global and local response sensitivities to the discrete loading

parameter considered than the F-B model. However, this relative advantage of the D-B model may be

due to its more accurate description of the distributed mass.

(e) According to the scaled sensitivity results presented in Fig. 38, the global and local response quantities

considered here are most sensitive to Young�s modulus, E, by a wide margin. This result depends
mainly on the fact that changes in the stiffness properties produce a change in the natural periods

of the structure, resulting in a gradually increasing shift in time between the response histories of

the original and perturbed structures, respectively. This time shift produces large response sensitivities.

The F-B model performs particularly well when used to evaluate the sensitivities of the global and local

response quantities to Young�s modulus.

This third example shows again that F-B element models perform better than D-B element models as

they achieve better accuracy overall for both response and response sensitivities at a lower computational
cost (here about 30% lower). This higher accuracy is particularly pronounced for the local response quan-

tity considered and its sensitivities. Nevertheless, it is pointed out that higher performance of the F-B ele-

ments could possibly be achieved in dynamic cases through the development of a mass description

consistent with the element formulation.
5. Insight into the numerical behavior of F-B and D-B frame models for response and response sensitivity

analysis

The results presented in Section 4 shed some light on the different performance of F-B and D-B frame

elements. In quasi-static analysis, F-B frame element models achieve the best compromise between accuracy

and computational effort by using a single finite element for each physical structural component (beam and/

or column). According to the authors experience, the use of five G–L integration points along the element
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usually provides more than satisfactory results for response (global and local) quantities. In fact, the

Gauss–Lobatto integration rule interpolates exactly a polynomial of order p = 2n � 3, where n denotes

the number of integration points. Setting n = 5 implies the exact integration of a polynomial of order

p = 7, generally able to accurately describe the effects of material non-linearities on the displacement fields

experienced by a single structural component. A higher number of integration points may yield only neg-
ligible improvements in the accuracy of the numerical integration, but allows to better capture the contin-

uous nature of the actual inelastic behavior of structural components. In the context of sensitivity analysis,

a better description of the continuous inelastic behavior can be crucial to obtain accurate results. In par-

ticular, if the material constitutive laws are not continuously differentiable (as in the case of the J2 plasticity

model used herein), the use of a higher number of integration points captures better the spreading of the

inelastic behavior along the structural member, with two main consequences: (a) the number of spurious

discontinuities (generated by spatial discretization of material behavior) increases, and (b) the magnitude

of these discontinuities decreases (see Figs. 8(a) and 19(a)). The actual discontinuities (inherent to the phys-
ical problem) are not affected by varying the number of integration points as shown in Figs. 11(a) and 22(a).

D-B frame element models also exhibit smearing of the spurious discontinuities with increasing number of

integration points (see Figs. 7(b), 8(b), 10(b) and Figs. 18(b), 19(b), 21(b)). However, increasing the number

of integration points alone is not sufficient to reduce the error inherent to the D-B formulation, which is due

to the approximation of the axial and flexural displacement fields with a linear and a third order polyno-

mial, respectively. In particular, when spurious discontinuities generate an oscillatory behavior in response

sensitivities, the amplitude of the oscillations can be reduced simply by increasing the number of integration

points along each element. However, the average trend of the calculated response sensitivities can be cor-
rected (toward the exact solution) only by refining the mesh, i.e., increasing the number of elements and

thus the number of degrees of freedom in the model, as shown in Fig. 39 for the cantilever beam model

used as first application example in this paper (see Section 4.1).

The above observations are mainly based on quasi-static analysis studies, but they can be extended to

dynamic analysis cases, provided that other important aspects are taken into account. In particular, it is

worth noting that: (a) the discontinuities in response sensitivities are more difficult to detect in dynamic

analysis than in quasi-static analysis; (b) the accurate and consistent modeling of inertia and damping prop-

erties is as important as the accurate prediction of stiffness and restoring force properties, for which the F-B
formulation has been proved superior to the D-B one; and (c) accuracy in response sensitivities is more

demanding in terms of mesh refinement than the same level of accuracy in the corresponding response

quantities. Typically, a mesh in which each structural member is modeled by a single F-B frame element
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with five G–L points yields accurate results for response quantities in the context of a dynamic structural

analysis. However, unlike in the quasi-static case, increasing the number of integration points per element

may not be sufficient for improving the accuracy of response sensitivities to a required level, and refining the

mesh may be necessary. This result is not due to an inherent limitation of F-B elements, which generally

perform better than D-B elements, but it has to be seen as a direct consequence of the increased difficulty
of the response sensitivity problem when compared to the response problem.
6. Conclusions

This paper presents an accurate and insightful comparison of the procedures for computing response sen-

sitivities to material and discrete loading parameters for displacement-based and force-based materially-

non-linear-only finite element models of structural frame systems. Both procedures emanate from the direct
differentiation method, and consist of differentiating exactly the incremental-iterative numerical scheme for

the finite element response calculation. Comparison of their implementation in a general-purpose non-linear

finite element analysis program based on the direct stiffness method is discussed in great detail.

Three representative application examples are provided: a cantilever steel beam and a simple statically

indeterminate frame both subjected to a non-linear quasi-static pushover analysis, and a five-storey, one-

bay steel moment-resisting frame subjected to a non-linear dynamic analysis for earthquake base excitation.

Closed-form solutions for the response and response sensitivities are available for the first two examples.

The non-linear inelastic material model used in the examples consists of the 1-D J2 plasticity model, which
describes the moment–curvature constitutive law at the section level. However, the differentiation methods

compared in this paper apply to any material constitutive model that can be formulated analytically.

Based on the results presented, it is concluded that the established superiority of force-based (F-B) over

displacement-based (D-B) frame elements in terms of trade-off between accuracy in response computations

and computational effort is even emphasized for response sensitivity analysis. While for D-B frame element

models a significant refinement of the finite element mesh is necessary in order to obtain accurate response

sensitivity results, in the case of F-B frame element models, the mesh used for accurate response computa-

tion also provides satisfactory response sensitivity results.
The superiority of F-B over D-B elements established in this paper for finite element response sensitivity

analysis could have significant impact on any kind of applications that requires response sensitivity anal-

ysis. Such applications include structural reliability analysis, structural optimization, structural identifica-

tion, and finite element model updating.
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