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SUMMARY

This paper presents a method to compute response sensitivities of finite element models of structures
based on a three-field mixed formulation. The methodology is based on the direct differentiation method
(DDM), and produces the response sensitivities consistent with the numerical finite element response.
The general formulation is specialized to frame finite elements and details related to a newly developed
steel–concrete composite frame element are provided. DDM sensitivity results are validated through the
forward finite difference method (FDM) using a finite element model of a realistic steel–concrete composite
frame subjected to quasi-static and dynamic loading. The finite element model of the structure considered
is constructed using both monolithic frame elements and composite frame elements with deformable
shear connection based on the three-field mixed formulation. The addition of the analytical sensitivity
computation algorithm presented in this paper extends the use of finite elements based on a three-field
mixed formulation to applications that require finite element response sensitivities. Such applications
include structural reliability analysis, structural optimization, structural identification, and finite element
model updating. Copyright q 2006 John Wiley & Sons, Ltd.
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GENERAL THEORY AND APPLICATION TO FRAME STRUCTURES 115

1. INTRODUCTION

Finite element response sensitivities represent an essential ingredient for gradient-based
optimization methods used to solve problems in structural optimization, structural reliability anal-
ysis, structural identification and finite element model updating [1, 2]. Finite element
response sensitivities are also invaluable for gaining deeper insight into the effects and relative
importance of the various geometric, material, and loading parameters defining the structure and
its loading environment.

Sensitivity analysis formulations have been developed for displacement-based finite element
models [3–5] and, recently, for force-based frame elements [6, 7]. The advantages gained
in response analysis by using finite element formulations more advanced than the classical
displacement-based formulation can be further extended to the realm of response sensitivity
analysis [8].

A large body of research has been devoted to mixed finite element formulations
since they were first introduced in the pioneering work of Pian [9]. Several finite elements
based on different variational principles have been developed [10–14] and relationships among
them have been established [15, 16]. Accuracy and performance have been thoroughly analysed
and improved and important properties have been recognized and explained, such as equiv-
alence between various stress recovery techniques [17] and ability to eliminate shear-locking
effects for specific applications [14]. After more than three decades of research in the field,
mixed finite elements are well established and largely adopted tools in a wide
range of structural mechanics applications. However, to the authors knowledge,
attempts of extending mixed finite element formulations to response sensitivity analysis by us-
ing the direct differentiation method (DDM) are limited to linear elastic and quasi-static
analysis [18].

Multi-field mixed finite element formulations were proposed, among others, for finite elements
widely used in the structural engineering community such as frame elements. Mixed frame ele-
ments are more accurate in nonlinear analysis than displacement-based elements and are a possible
alternative to the recently established force-based elements [19]. Examples are available in the
recent literature for monolithic beams [19–21] and for composite beams with deformable shear
connection [22, 23].

This paper focuses on the formulation of finite element response sensitivity analysis
in the case of a nonlinear three-field mixed approach derived from the Hu–Washizu
variational principle, considering both quasi-static and dynamic loadings. The formulation
presented here is based on the general DDM, which consists of differentiating
consistently the space (finite element) and time (finite difference) discrete equations govern-
ing the structural response [4, 5]. The general formulation for finite element response sensitiv-
ity analysis using the three-field mixed formulation is then specialized and applied to frame
finite element models. The results of the DDM are validated through the forward finite
difference method (FDM) using as application example a realistic steel–concrete composite
frame structure subjected to quasi-static and dynamic loading, respectively. Both
monolithic frame elements [21] and composite frame elements with deformable shear
connection [23] based on the three-field mixed formulation are included in this application
example.
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2. FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS

The computation of finite element response sensitivities to geometric, material and loading param-
eters requires extension of the finite element algorithms for response computation only. If r denotes
a generic scalar response quantity, the sensitivity of r with respect to the geometric, material or
loading parameter � is expressed, by definition, as the (absolute) partial derivative of r with respect
to the variable � evaluated at � = �0 i.e. �r/��|�=�0 where �0 denotes the nominal value taken by
the sensitivity parameter � for the finite element response analysis.

In the sequel, the notation proposed by Kleiber et al. [2] is adopted and the case of a single
sensitivity parameter is considered without loss of generality. Thus, the quantity dr/d�, called
‘unconditional sensitivity’ or ‘unconditional derivative’ of r with respect to �, denotes the absolute
partial derivative of the argument r with respect to the scalar variable � (i.e. the derivative of response
variable r with respect to the parameter � considering both explicit and implicit dependencies). On
the other hand, �r/��|z, called ‘conditional sensitivity’ or ‘conditional derivative’ of r with respect
to � for z fixed, is defined as the partial derivative for r with respect to parameter � when the vector
of variables z is kept fixed.

It is assumed herein that the structural response is computed using a general-purpose non-
linear finite element analysis program based on the direct stiffness method, employing suit-
able numerical integration schemes at both the structure and element level. At each time step,
after convergence of the incremental-iterative response computation, the consistent response
sensitivities are calculated. According to the DDM (see References [3–8]), this requires the
analytical differentiation of the finite element numerical scheme for response computation with
respect to the sensitivity parameter � in order to obtain the ‘exact’ or ‘consistent’ sensitiv-
ities of the computationally simulated system response. After spatial discretization using the
finite element method, the equations of motion of a structural system, accounting for both ma-
terial and geometric nonlinearities, take the form of the following nonlinear matrix differential
equation:

M(�)ü(t, �) + C(�)u̇(t, �) + R(u(t, �), �) =F(t, �) (1)

where t is the time, � the scalar sensitivity parameter (geometric, material or loading
variable), u(t, �) the vector of nodal displacements, M(�) the mass matrix, C(�) the damping
matrix, R(u(t, �), �) the history-dependent internal (inelastic) resisting force vector, F(t, �) the
applied dynamic load vector, and a superposed dot denotes one differentiation with respect to
time.

We assume without loss of generality that the time continuous-spatially discrete
equation of motion, Equation (1), is integrated numerically in time using a single-step time
stepping scheme expressing the nodal acceleration vector ü and nodal velocity vector u̇
at time tn+1 in terms of the nodal displacement vector u at time tn+1 and the nodal accelera-
tion, velocity and displacement vectors at the previous time step tn as

ün+1 = a1un+1 + a2un + a3u̇n + a4ün (2)

u̇n+1 = a5un+1 + a6un + a7u̇n + a8ün (3)
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Substituting Equations (2) and (3) in Equation (1) expressed at time tn+1 yields the following
nonlinear matrix algebraic equation in the unknown un+1 = u(tn+1):

F̃n+1 − [a1Mun+1 + a5Cun+1 + R(un+1)] = 0 (4)

where

F̃n+1 =Fn+1 − M[a2un + a3u̇n + a4ün] − C[a6un + a7u̇n + a8ün] (5)

and ai (i = 1, . . . , 8) denote the coefficients of the time stepping scheme. This formulation rep-
resents a general class of one-step implicit integration algorithms, containing the well-known
Newmark-� and Wilson methods (see References [3–8]). In the case of the Newmark-� method
[24], the integration coefficients are given by

a1 = 1

(�t)2�2
, a2 =−a1, a3 =− 1

(�t)�2
, a4 = 1 − 1

2�2

a5 = �1
(�t)�2

, a6 =−a5, a7 = 1 − �1
�2

, a8 =
(
1 − �1

2�2

)
(�t)

where �1 and �2 are two parameters controlling the accuracy and stability of the numerical scheme
(e.g. �1 = 1

2 and �2 = 1
4 for the unconditionally stable average acceleration method). Equation (4)

represents the set of nonlinear algebraic equations for the unknown response quantities un+1 that
has to be solved at each time step [tn, tn+1]. In general, the subscript (. . .)n+1 indicates that the
quantity to which it is attached is evaluated at discrete time tn+1.

We assume that un+1 is the converged solution (up to some iteration residuals satisfying a
specified tolerance usually taken in the vicinity of the machine precision) for the current time step
[tn, tn+1]. Then, we differentiate Equation (4) with respect to � using the chain rule of differentiation
and recognizing that R(un+1) =R(un+1(�), �) (i.e. the structure inelastic resisting force vector
depends on � both implicitly, through un+1, and explicitly), which yields the following response
sensitivity equation at the structure level (see References [3–5]):

[a1M + a5C + (Kstat
T )n+1]dun+1

d�

= dF̃n+1

d�
−
(
a1

dM
d�

+ a5
dC
d�

)
un+1 − �R(un+1(�), �)

��

∣∣∣∣
un+1

(6)

where

dF̃n+1

d�
= dFn+1

d�
− dM

d�
(a2un + a3u̇n + a4ün) − M

[
a2

dun
d�

+ a3
du̇n
d�

+ a4
dün
d�

]

−dC
d�

[a6un + a7u̇n + a8ün] − C
[
a6

dun
d�

+ a7
du̇n
d�

+ a8
dün
d�

]
(7)
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The term (Kstat
T )n+1 in Equation (6) denotes the static consistent (or algorithmic) tangent stiffness

matrix of the structure at time tn+1. The last term on the RHS of Equation (6) represents the partial
derivative with respect to � of the internal resisting force vector, R(un+1), under the condition that
the displacement vector un+1 remains fixed, and is computed through direct stiffness assembly of
the element resisting force derivatives for fixed element nodal displacements.

The above formulation, expressed for the case of dynamic loading, contains the quasi-static
load case as a particular case, obtained by simply equating to zero in Equations (4)–(7) all terms
containing the mass and damping matrices as well as their derivatives with respect to �.

3. RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT LEVEL

3.1. General geometric and material nonlinear theory including shape sensitivity

The general formulation is presented for a structural model including geometric and material
nonlinearities and considering material, shape, and loading sensitivities. An isoparametric finite
element in total Lagrangian formulation is considered.

Following Reference [14], three different domains need to be introduced:

(a) the parent domain, denoted by the symbol �, with element coordinates n=[�1, �2, �3]T;
(b) the reference (or initial configuration) domain, �0, with coordinates X=[X1, X2, X3]T;
(c) the current configuration domain, �(t), with coordinates x(t)=[x1(t), x2(t), x3(t)]T, where

t denotes time (or pseudo-time in quasi-static analysis).

Correspondingly, the following one-to-one mappings are defined:

(a) from parent domain to current configuration: x= x(n, t);
(b) from parent domain to reference configuration: X=X(n);
(c) from reference configuration to current configuration: x= x(X, t).

It is supposed that the above mappings satisfy certain conditions of regularity such that the inverse
mappings exist and the motion is well defined and sufficiently smooth.

As measure of strain, the Green–Lagrange strain is adopted, defined in tensorial form using the
index notation as

EG
ij = 1

2

(
�ui
�Xj

+ �uj
�Xi

+ �uk
�Xi

�uk
�Xj

)
, i, j = 1, 2, 3 (8)

Using Voigt notation, the vector form of the Green–Lagrange strain tensor is defined as

EG =[EG
11, E

G
22, E

G
33, 2E

G
23, 2E

G
13, 2E

G
12]T (9)

The work conjugate stress measure of the Green–Lagrange strain tensor is the second
Piola–Kirchhoff stress tensor, SPK2ij , that can be expressed in vector form using Voigt notation
as

SPK2 =[SPK211 , SPK222 , SPK233 , SPK223 , SPK213 , SPK212 ]T (10)
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The Hu–Washizu functional in total Lagrangian formulation is [14]

�HW(u,SPK2,EG) =
∫

�0

�(EG) d�0 +
∫

�0

STPK2(Hu − EG) d�0 − �ext(u) (11)

in which u, SPK2 and EG are the assumed displacement, stress and strain fields, respectively, �(EG)

is the strain energy density and H is a differential matrix operator defined as

H = Hl + 1
2Hnl (12)

Hl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�X1

0 0 0
�

�X3

�
�X2

0
�

�X2
0

�
�X3

0
�

�X1

0 0
�

�X3

�
�X2

�
�X1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(13)

Hnl =

⎡
⎢⎢⎢⎢⎢⎣

�u1
�X1

�
�X1

�u1
�X2

�
�X2

�u1
�X3

�
�X3

(
�u1
�X2

�
�X3

+ �u1
�X3

�
�X2

) (
�u1
�X1

�
�X3

+ �u1
�X3

�
�X1

) (
�u1
�X1

�
�X2

+ �u1
�X2

�
�X1

)

�u2
�X1

�
�X1

�u2
�X2

�
�X2

�u2
�X3

�
�X3

(
�u2
�X2

�
�X3

+ �u2
�X3

�
�X2

) (
�u2
�X1

�
�X3

+ �u2
�X3

�
�X1

) (
�u2
�X1

�
�X2

+ �u2
�X2

�
�X1

)

�u3
�X1

�
�X1

�u3
�X2

�
�X2

�u3
�X3

�
�X3

(
�u3
�X2

�
�X3

+ �u3
�X3

�
�X2

) (
�u3
�X1

�
�X3

+ �u3
�X3

�
�X1

) (
�u3
�X1

�
�X2

+ �u3
�X2

�
�X1

)

⎤
⎥⎥⎥⎥⎥⎦

T

(14)

where Hl and Hnl denote the linear and nonlinear parts, respectively, and the superposed T
indicates the transpose operator. The term �ext(u) denotes the potential energy of the external
forces and is defined as

�ext(u) =
∫

�0

�0b
Tu d�0 +

∫
��0t

tT0u d�0 (15)

where � denotes the mass density per unit volume, b are the body forces per unit mass, t are
the surface tractions, ��t denotes the part of the boundary �� of � where the surface tractions
are prescribed, d� and d� denote an infinitesimal volume and surface element, respectively, and
the subscript ‘0’ indicates that the quantities to which it is attached are computed in the reference
configuration. For the sake of brevity, the term representing the kinetic energy is not included in the
Hu–Washizu functional (Equation (11)). Notice that the kinetic energy term depends only on the
displacement field and thus has the same form as in the case of the single-field (displacement-based)
principle of virtual work [14].

Imposing the stationarity of the functional �HW(u,SPK2,EG) with respect to the three fields u,
SPK2 and EG we obtain

�u�HW = 0 ⇒
∫

�0

(HTSPK2 − �0b)T�u d�0 −
∫

��0t
tT0�u d�0 = 0 (16)
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�SPK2�HW = 0 ⇒
∫

�0

(Hu − EG)T�SPK2 d�0 = 0 (17)

�EG�HW = 0 ⇒
∫

�0

(
��(EG)

�EG
− SPK2

)T

�EG d�0 = 0 (18)

The classical Hu–Washizu formulation is limited to the case in which the strain energy den-
sity �(EG) is a potential, as for elastic materials. Equations (16)–(18) assume the meaning of
weak forms of equilibrium, compatibility and constitutive law, respectively. In order to gener-
alize the Hu–Washizu functional to the case of nonlinear inelastic materials, it is necessary to
substitute the term ��(EG)/�EG of the variation �EG�HW in Equation (18) with an expression
for the second Piola–Kirchhoff stresses as a function of the Green–Lagrange strain history, i.e.
ŜPK2(EG) = ŜPK2(EG(�), � ∈ [0, t]) obtained through any material constitutive law. In the sequel,
superposed hats, i.e. •̂, are placed on stress and stress-derived fields evaluated in terms of other
independently interpolated variables (i.e. in terms of strains obtained from the assumed strain field)
through the constitutive relations, while symbols without a superposed hat denote the assumed
displacement, stress and strain fields. Thus, Equation (18) becomes

�EG�HW = 0 ⇒
∫

�0

(ŜPK2(EG) − SPK2)T�EG d�0 = 0 (19)

Introducing the finite element discretization and considering explicitly the dependencies on
the sensitivity parameter �, the mapping from the parent domain to the current
configuration is given by

x(n, �, t) =Ne(n)xeI (�, t) (20)

and the mapping from the parent domain to the reference configuration is given by

X(n, �) =Ne(n)Xe
I (�) (21)

where xeI (�, t) and Xe
I (�) denote the coordinates of node I of element ‘e’ in the current

configuration and reference configuration, respectively. In Equations (20) and (21), the param-
eter � could represent a nodal coordinate in the reference configuration (shape parameter), for
example. In the sequel, the dependency on time is not expressed explicitly in order to avoid a
heavy notation and because it can be easily understood from the context. From the finite element
discretization, the displacement, stress and strain fields are expressed as

ue(n, �) = Ne(n)qe(�)

SePK2(n, �) = Se(n)se(�),

Ee
G(n, �) = Ee(n)ee(�)

e= 1, . . . , Nel (22)

where qe(�), se(�), and ee(�) denote the nodal displacement, stress and strain parameters, respec-
tively; Ne(n), Se(n), and Ee(n) are the shape (interpolation) functions for the displacement, stress
and strain fields, respectively, all quantities being referred to element ‘e’; and Nel denotes the
number of finite elements used discretizing the structure.
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Substituting Equation (22) in Equations (16), (17) and (19), and recognizing that

�0 =
Nel⋃
e=1

�e
0 (23)

where
⋃

denotes the union operator and �e
0 is the volume of the element ‘e’ in the reference

configuration, we obtain the following weak forms of equilibrium, compatibility and constitutive
law, respectively:

Nel∑
e=1

(∫
�e
0

(HTSe(X)se(�) − �0(X, �)b(X, �))T · Ne(X) d�0

−
∫

��e
0t

tT0 (X, �)Ne(X) d�0

)
�qe = 0 (24)

Nel∑
e=1

(∫
�e
0

(Ee(X)ee(�) − HNe(X)qe(�))T · Se(X) d�0

)
�se = 0 (25)

Nel∑
e=1

(∫
�e
0

(Se(X)se(�) − ŜePK2(E
e(X)ee(�), �))T · Ee(X) d�0

)
�ee = 0 (26)

Let us refer to a single element and drop the suffix ‘e’ in the sequel. Considering the arbitrary
(virtual) nature of �qe, �se, and �ee in the above three equations, we obtain the following governing
equations for each of the finite elements used in the discretization of the structural system:

BT(�)s(�) − Q(�) = 0 (27)

E(�)e(�) − B(�)q(�) = 0 (28)

a(e(�), �) − ET(�)s(�) = 0 (29)

in which

Q(�) =
∫

�0(�)

�0(X, �)bT(X, �)N(X) d�0 +
∫

��0t (�)

tT0 (X, �)N(X) d�0

=
∫

�
�0(n, �)bT(n, �)N(n)J (n, �) d� +

∫
��

tT0 (n, �)N(n)J (n, �) d(��) (30)

B(�) =
∫

�0(�)

ST(X)B(X, �) d�0 =
∫

�
ST(n)B(n, �)J (n, �) d� (31)

B(n, �) = H(n, �)N(n) (32)
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E(�) =
∫

�0(�)

ST(X)E(X) d�0 =
∫

�
ST(n)E(n)J (n, �) d� (33)

a(e(�), �) =
∫

�0(�)

ET(X)ŜPK2(E(X)e(�), �) d�0

=
∫

�
ET(n)ŜPK2(E(n)e(�), �)J (n, �) d� (34)

where the symbol H(n, �) is used to highlight the dependency of the operator H on n and �
and J (n, �) denotes the Jacobian of the transformation between the parent domain � and the
reference domain �0 such that d�0 = J (n, �) · d�, n∈ �. Equations (27)–(29) constitute a system
of nq+ns+ne coupled equations in nq+ns+ne unknowns, where nq , ns and ne denotes the number
of displacement, stress and strain parameters, respectively. Equation (29) is nonlinear if any of the
used material models is nonlinear, Equations (27) and (28) are nonlinear since B(�) depends on q(�)

through the nonlinear part of the operator H(n, �) and Q(�) depends implicitly on q(�) when t0 is
displacement-dependent. Notice that the surface tractions t0 at the element boundaries also contain
the reactions of adjacent elements and thus are generally functions of the nodal displacements, i.e.
t0 = t0(q(�), �). The nonlinear problem is solved using an incremental-iterative procedure, such as
the Newton–Raphson method.

Differentiating Equation (28) exactly with respect to � and performing some algebraic
manipulations (see Appendix A), we obtain

de(�)

d�
=D−1

t (�)ET(�)D−1
t (�)

(
B(�)

dq(�)

d�
+ dB(�)

d�
q(�) − dE(�)

d�
e(�)

)
(35)

in which the following matrices are introduced:

Dt (�) =
∫

�0(�)

ET(X)kIP(X)E(X) d�0 (36)

Dt (�) =E(�) · D−1
t (�) · ET(�) (37)

where kIP(X) denotes the material consistent (or algorithmic) tangent moduli at the integra-

tion point. Matrices Dt (�) and Dt (�) are required in the element state determination for the
response and in the response sensitivity computation. The reader is referred to Reference [16]
for the conditions under which these two matrices are invertible assuming that kIP(X) is not
singular.

Differentiating Equation (22)3 and the material constitutive relation with respect to � yields,
respectively

dEG(n, �)

d�
= E(n)

de(�)
d�

(38)
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dŜPK2(n, �)

d�
= �ŜPK2(n, �)

�EG

∣∣∣∣∣
�

dEG(n, �)

d�
+ �ŜPK2(n, �)

��

∣∣∣∣∣
EG

= kIP(n)E(n)
de(�)
d�

+ �ŜPK2(n, �)

��

∣∣∣∣∣
e

(39)

Differentiating Equation (34) with respect to � gives

da(e(�), �)

d�
=
∫

�
ET(n)

dŜPK2(n, �)

d�
J (n, �) d� +

∫
�
ET(n)ŜPK2(n, �)

dJ (n, �)

d�
d� (40)

Equation (40) is obtained noting that, if f (X, �) is a function defined in �0(�) and I (�) denotes
the integral of this function over the reference domain, then

I (�) =
∫

�0(�)

f (X, �) d�0 =
∫

�
f (n, �)J (n, �) d� (41)

from which

dI (�)

d�
= d

d�

(∫
�

f (n, �)J (n, �) d�
)

=
∫

�

d

d�
[ f (n, �)J (n, �)] d�

=
∫

�

d f (n, �)

d�
J (n, �) d� +

∫
�

f (n, �)
dJ (n, �)

d�
d� (42)

Finally, by differentiating Equations (29) and (27) with respect to � and performing some algebraic
manipulations (see Appendix A), we obtain, respectively,

ds(e(�), �)

d�
=D−1

t (�)E(�)D−1
t (�)

(
da(e(�), �)

d�
− d(ET(�))

d�
s(e(�), �)

)
(43)

dQ(e(�), �)

d�
=BT(�)

ds(e(�), �)

d�
+ d(BT(�))

d�
s(e(�), �) (44)

In order to compute the conditional response sensitivities (for q fixed, thus with �q(�)/��|q = 0),
Equations (35), (38)–(40), (43) and (44) are modified as

�e(�)

��

∣∣∣∣
q
=D−1

t (�)ET(�)D−1
t (�)

⎛
⎝ �B(�)

��

∣∣∣∣∣
q

q(�) − dE(�)

d�
e(�)

⎞
⎠ (45)

�EG(n, �)

��

∣∣∣∣
q
= E(n)

�e(�)

��

∣∣∣∣
q

(46)

�ŜPK2(n, �)

��

∣∣∣∣∣
q

= kIP(n)E(n)
�e(�)

��

∣∣∣∣
q

+ �ŜPK2(n, �)

��

∣∣∣∣∣
e,q

(47)
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�a(e(�), �)

��

∣∣∣∣
q
=
∫

�
ET(n)

�ŜPK2(n, �)

��

∣∣∣∣∣
q

J (n, �) d�

+
∫

�
ET(n)ŜPK2(n, �)

dJ (n, �)

d�
d� (48)

�s(e(�), �)

��

∣∣∣∣
q
=D−1

t (�)E(�)D−1
t (�)

(
�a(e(�), �)

��

∣∣∣∣
q

− d(ET(�))

d�
s(e(�), �)

)
(49)

�Q(e(�), �)

��

∣∣∣∣
q
=BT(�)

�s(e(�), �)

��

∣∣∣∣
q

+ �(BT(�))

��

∣∣∣∣∣
q

s(e(�), �) (50)

where the quantity �ŜPK2(n, �)/��|e,q in Equation (47) is computed through conditional differen-
tiation (at the material level) of the material constitutive law. Note that E(�) depends on � only
through �0(�), and thus dE(�)/d�= �E(�)/��|q. Furthermore, e(�) depends on � both explicitly
and implicitly through q(�), i.e. e(�) = e(q(�), �), as shown in Equation (35). The quantities s(�)

and Q(�) also depend on � both explicitly and implicitly through e(�), since they are functions of
a(e(�), �) as shown in Equations (43) and (44).

3.2. Specialization to geometric linear formulation

If linear geometry (i.e. small displacements and small strains) is assumed, the three-field mixed
finite element formulation can be obtained from the stationarity conditions of the Hu–Washizu
functional, that can be written as [11]

�HW(u, r, e) =
∫

�
�(e) d� +

∫
�
rT(Du − e) d� − �ext(u) (51)

where u, r and e are the assumed displacement, stress and (small) strain fields, respectively, �(e)
is the strain energy density, D is a linear differential operator matrix defined as

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
�X1

0 0 0
�

�X3

�
�X2

0
�

�X2
0

�
�X3

0
�

�X1

0 0
�

�X3

�
�X2

�
�X1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(52)

As in the previous section, matrix notation and Voigt notation are used [14] here. The term �ext(u)

denotes the potential energy of the external forces and is defined as

�ext(u) =
∫
�
bTu d� +

∫
��t

tTu d� (53)

As in the general formulation presented in previous section, the term representing the kinetic energy
is not included in the Hu–Washizu functional in Equation (51).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:114–161
DOI: 10.1002/nme



GENERAL THEORY AND APPLICATION TO FRAME STRUCTURES 125

Imposing stationarity of the Hu–Washizu functional in Equation (51) with respect to the three
fields u, r and e, yields

�u�HW = 0 ⇒
∫

�
(DTr− b)T�u d� −

∫
��t

tT�u d�= 0 (54)

�r�HW = 0 ⇒
∫

�
(Du − e)T�r d�= 0 (55)

�e�HW = 0 ⇒
∫

�

(
��(e)

�e
− r

)T

�e d�= 0 (56)

The classical Hu–Washizu formulation is limited to the case in which the strain energy density
�(e) is a potential, as for elastic materials. Equations (54)–(56) assume the meaning of weak
forms of equilibrium, compatibility and constitutive law, respectively. In order to generalize the
Hu–Washizu functional to the case of nonlinear inelastic materials, it is necessary to substitute
the term ��(e)/�e of the variation �e�HW in Equation (56) with an expression for the stresses
as a function of the strain history, i.e. r̂(e) = r̂(e(�), �∈ [0, t]), obtained through any material
constitutive law (see Section 3.1).

The finite element approximations of the three independently interpolated fields u, r and e take
the form, respectively,

ue(X, �) =Ne(X)qe(�)

re(X, �) =Se(X)se(�), e= 1, . . . , Nel

ee(X, �) =Ee(X)ee(�)

(57)

Henceforth, the dependencies of the different quantities on the sensitivity parameter � and on
the position vector X=[X1, X2, X3]T are shown explicitly because of their important role in the
derivation of the response sensitivity equations. Unlike in Section 3.1, relations for shape sensitivity
computations are not derived; they would require considering the dependencies of shape functions
and integration domains on the sensitivity parameter �.

Substituting Equation (57) in Equations (54)–(56), we obtain the following weak forms of
equilibrium, compatibility and constitutive law, respectively:

Ne1∑
e=1

(∫
�e

(DTSe(X)se(�) − be(X))T · Ne(X) d� −
∫

��e
t

tT(X)Ne(X) d�

)
�qe = 0 (58)

Ne1∑
e=1

(∫
�e

(Ee(X)ee(�) − DNe(X)qe(�))T · Se(X) d�

)
�se = 0 (59)

Ne1∑
e=1

(∫
�e

(Se(X)se(�) − r̂e(Ee(X)ee(�), �))T · Ee(X) d�

)
�ee = 0 (60)

Let us define Be(X) =DNe(X) and drop the suffix ‘e’ in the sequel. Considering the arbitrary
(virtual) nature of �qe, �se, and �ee in Equations (58)–(60), we obtain the following governing
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equations for each of the finite elements used in the discretization of the structural system:

BTs(�) − Q(�) = 0 (61)

Ee(�) − Bq(�) = 0 (62)

a(e(�), �) − ETs(�) = 0 (63)

where

Q(�) =
∫

�
bT(X, �)N(X) d� +

∫
��t

tT(X, �)N(X) d� (64)

B=
∫

�
ST(X)B(X) d� (65)

E=
∫

�
ST(X)E(X) d� (66)

a(e(�), �) =
∫

�
ET(X)r̂(E(X)e(�), �) d� (67)

Equations (61)–(63) represent a system of nq + ns + ne (generally) coupled equations in
nq + ns + ne unknowns, where nq , ns and ne denote the number of displacement, stress and
strain parameters, respectively. Equations (61) and (62) are linear, while Equation (63) is non-
linear if any of the used material models is nonlinear. The nonlinear problem is solved using an
incremental-iterative scheme, such as the Newton–Raphson method. In some special cases the ma-
trix E is invertible (e.g. when the stress shape functions S(X) and strain shape functions E(X) are
identical) [16] and Equations (61)–(63) can be uncoupled and solved sequentially. However, the
general case is considered hereunder, while a special case for which the matrix E is invertible will
be presented later for a specific finite element implementation (Section 4.1).

Differentiating Equation (62) with respect to � and premultiplying by D−1
t ETD−1

t yields the
following relation, after some algebraic manipulations (see Appendix A):

de(�)
d�

=D−1
t ETD−1

t B
dq(�)

d�
(68)

where, similarly as in the previous section, matrices Dt and Dt are defined as

Dt =
∫

�
ET(X)kIP(X)E(X) d� (69)

Dt =ED−1
t ET (70)

These matrices are required in the element state determination for the response and in the response
sensitivity computation. The reader is referred to Reference [16] for the conditions under which
these two matrices are invertible assuming that kIP(X) is not singular.
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Differentiating Equation (57)3 and the material constitutive relation with respect to � yields,
respectively,

de(X, �)

d�
=E(X)

de(�)
d�

(71)

dr̂(X, �)

d�
= �r̂(X, �)

�e

∣∣∣∣
�

de(X, �)

d�
+ �r̂(X, �)

��

∣∣∣∣
e

= kIP(X)E(X)
de(�)
d�

+ �r̂(X, �)

��

∣∣∣∣
e

(72)

Differentiating Equation (67) with respect to � and substituting Equations (72) and (69) in the
resulting equation gives

da(e(�), �)

d�
=
∫

�
ET(X)

dr̂(X, �)

d�
d�=Dt

de(�)

d�
+
∫

�
ET(X)

�r̂(X, �)

��

∣∣∣∣
e
d� (73)

Finally, by differentiating Equations (63) and (61) with respect to � and performing some algebraic
manipulations (see Appendix A), we obtain, respectively,

ds(e(�), �)

d�
=D−1

t ED−1
t

da(e(�), �)

d�
(74)

dQ(e(�), �)

d�
=BT ds(e(�), �)

d�
(75)

In order to compute the conditional response sensitivities (for q fixed, thus with �q(�)/��|q = 0),
Equations (68) and (71)–(75) are modified as

�e(�)

��

∣∣∣∣
q
= 0 (76)

�e(X, �)

��

∣∣∣∣
q
= 0 (77)

�r̂(X, �)

��

∣∣∣∣
q
= �r̂(X, �)

��

∣∣∣∣
e

(78)

�a(e(�), �)

��

∣∣∣∣
q
=
∫

�
ET(X)

�r̂(X, �)

��

∣∣∣∣
q
d� (79)

�s(e(�), �)

��

∣∣∣∣
q
=D−1

t ED
−1
t

�a(e(�), �)

��

∣∣∣∣
q

(80)

�Q(e(�), �)

��

∣∣∣∣
q
=BT �s(e(�), �)

��

∣∣∣∣
q

(81)
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where the quantity �r̂(X, �)/��|e in Equation (78) is computed by conditional differentiation (at the
material level) of the material constitutive law. It is noteworthy that, in the case of linear geometry,
assuming q fixed is equivalent to assuming e fixed (e and q are linearly related as shown by
Equations (62) and (68)), while this equivalence does not apply in the case of nonlinear geometry
(see Equations (28) and (35)).

3.3. Specialization to 2-D frame structures

As already discussed in Section 1, the frame element is an important class of finite elements for
which the beneficial effects of a multi-field mixed formulation have been studied, proved and
employed. The specialization of the above three-field mixed formulation to 2-D frame elements
requires the definition of the section deformation vector, d, and section stress resultant vector, D.
The explicit definition of the above vectors depends on the specific frame element considered. In
general, a matrix As(X) can be defined such that

e(X, �) =As(X)d(x, �) (82)

D(x, �) =
∫
A(x)

As(X)Tr(X, �) dA (83)

where x denotes the abscissa along the frame axis (x ∈ [0, L], L the length of the frame element) and
A(x) denotes the cross-section at abscissa x . Explicit expressions for d,D, andAs(X) corresponding
to common frame models presented in the literature are given in Appendix B. In this section and
in Appendix B, the notation X=[X1, X2, X3]T = [x, y, z]T is employed for consistency with the
majority of the literature on frame elements.

For frame finite elements, it is common to use shape functions directly for the previously defined
quantities d and D and to obtain the complete displacement fields from the displacements u(x, �)

of the reference axis of the frame. Thus, Equation (57) can be rewritten as

u(x, �) = N(x)q(�)

D(x, �) = S(x)s(�)

d(x, �) = E(x)e(�)

(84)

Accounting for Equations (82)–(84), all the theoretical developments presented in the previous
sections for both response and response sensitivity analysis can be directly applied to any frame
element treated in the context of a three-field mixed formulation. In particular, the governing
equations for a frame element are formally identical to Equations (61)–(63), when the following
specialized definitions are used:

Q(�) =
∫ L

0
bT(x)N(x) dx + [tT(x)N(x)]|x=L

x=0 (85)

B=
∫ L

0
ST(x)B(x) dx (86)
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E=
∫ L

0
ST(x)E(x) dx (87)

a(e(�), �) =
∫ L

0
ET(x)D̂(E(x)e(�), �) dx (88)

Dt =
∫ L

0
ET(x)ks(x)E(x) dx (89)

where ks(x) denotes the consistent tangent stiffness matrix of the section at the abscissa x .
The sensitivity Equations (68) and (71)–(75) specialize to

de(�)

d�
=D−1

t ETD−1
t B

dq(�)

d�
(90)

dd(x, �)

d�
=E(x)

de(�)
d�

(91)

dD̂(x, �)

d�
= ks(x)E(x)

de(�)
d�

+ �D̂(x, �)

��

∣∣∣∣∣
e

(92)

da(e(�), �)

d�
= Dt

de(�)

d�
+
∫ L

0
ET(x)

�D̂(x, �)

��

∣∣∣∣∣
e

dx (93)

ds(e(�), �)

d�
=D−1

t ED−1
t

da(e(�), �)

d�
(94)

dQ(e(�), �)

d�
=BT ds(e(�), �)

d�
(95)

The equations for conditional response sensitivity computation are readily obtained from
Equations (90)–(95) imposing �q(�)/��|q = 0 and computing all the derivatives for q fixed, as
seen in Section 3.2 (Equations (76)–(81)).

4. VALIDATION EXAMPLES

4.1. Finite element modelling of steel–concrete composite frame structures

Composite frames made of steel–concrete beams and steel columns are nowadays common so-
lutions in the design of seismic resistant frames. As a consequence, in the last 10 years, a
growing attention has been given to finite element modelling and analysis of steel–concrete
composite structures [25]. The behaviour of composite beams, consisting of two components
connected through shear connectors to form an interacting unit, is significantly influenced by
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Figure 1. Kinematics of 2-D composite beam model (Newmark’s model).

the type of connection between the steel beam and the concrete slab. Partial composite action
develops when using flexible shear connectors [26]. Thus, for accurate analytical predictions,
structural models of composite structures must account for the interlayer slip between the steel and
concrete components. For this reason, a composite beam finite element able to model the effects of
the interface slip is required. The three-dimensional model for composite beams with deformable
shear connection under general state of stress [27] simplifies to the model introduced by Newmark
et al. [28] if only the in-plane bending behaviour is considered. In the Newmark’s model, the
geometrically linear Euler–Bernoulli beam theory (i.e. small displacements, rotations and strains)
is used to model each of the two parts of the composite beam; the effects of the deformable shear
connection are accounted for by using an interface model with distributed bond, and the contact
between the steel and concrete components is enforced (Figure 1). The interface slip is small, since
it corresponds to the difference in longitudinal displacements of the steel and composite fibres at
the steel–concrete interface.

Compared to common monolithic beams, composite beams with deformable shear connection
raise more challenging modelling and numerical difficulties, e.g. complex distributions of the
interface slip and force can develop [29] and special measures are necessary to avoid shear-locking
phenomena [30]. Despite some difficulties, three-field mixed elements [23] can be successfully
adopted for numerical simulation of the behaviour of steel–concrete composite beams, producing
accurate global and local results when a proper discretization of the structure is used [31].

In the present study, a 2-D steel–concrete composite frame element with deformable shear
connection, previously developed by the second author [23], is used for response simulation and
is augmented with the response sensitivity computation procedure presented above. The finite
element used is based on the three-field mixed formulation and assumes Newmark’s kinematics
(Figure 1). It has 10 nodal degrees-of-freedom (DOFs) in total: eight DOFs are external, while two
DOFs are internal and are condensed out before assembly at the structure level (Figure 2). The
procedure for response sensitivity calculation in presence of static condensation has been previously
derived by the authors and can be found elsewhere [32]. This finite element was proven to provide
accurate response simulations and to be superior in the evaluation of local quantities (e.g. section
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Figure 2. Degrees of freedom of the 2-D composite beam finite element.

deformations, section stress resultants, shear force distribution at the steel–concrete interface, etc.)
to equivalent displacement-based finite elements when meshes requiring similar computational
effort are used. Furthermore, this element presents a useful feature: it is able to model a standard
monolithic steel-only or reinforced concrete-only frame element without any modification in the
code. This is achieved simply by considering at the section level a concrete slab or a steel beam
of null cross-section area, obtaining a monolithic steel frame or a reinforced concrete frame,
respectively. The only precaution is to apply constraints to the eliminated DOFs. The obtained
three-field mixed monolithic frame element is characterized by exact distributions of section stress
resultants (as for force-based frame elements [19]), while the assumed displacement fields have the
same form as for standard displacement-based frame elements. The above useful feature allows to
assemble easily monolithic and composite frame elements in frame models, representing correctly
the connections between steel columns and steel beams or reinforced concrete columns and concrete
slabs [32].

Regarding the development of the sensitivity analysis, this element presents also a favourable
feature: the response sensitivity computation procedure, developed for a general three-field mixed
finite element and particularized to a frame element, can be further simplified significantly by
taking advantage of the properties of the employed shape functions for the section deformation
and section stress resultant fields. This condition derives from the fact that the shape functions
used for approximating the section deformations and the section stress resultants are the same (i.e.
E(x)=S(x)). This choice for the shape functions produces a matrix E that is positive definite and,
therefore, invertible [16]. Using this property, Equations (90) and (94) simplify to

de(�)

d�
=E−1B

dq(�)

d�
(96)

ds(e(�), �)

d�
=E−T da(e(�), �)

d�
(97)

In this way, inversion of the two matrices Dt and Dt (required in Equations (90) and (94)) is avoided
and only matrix E has to be inverted. It is noteworthy that, in this special case for which ns = ne,

the three matrices Dt , Dt , and E have the same dimension ns × ns = ne × ne.

4.2. Implementation of composite frame element and response sensitivity computation scheme in
a general-purpose nonlinear finite element structural analysis program

For validation purposes, the steel–concrete composite frame element and the response sensitivity
computation scheme for three-field mixed formulation were implemented in a general-purpose
nonlinear finite element structural analysis program, FEDEASLab [33]. FEDEASLab is a Matlab
toolbox [34] for linear and nonlinear, static and dynamic structural analysis, which also provides a
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Figure 3. Steel–concrete composite frame structure.
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Figure 4. Cross-section properties of the steel–concrete frame structure: (a) composite beam
cross-section; and (b) steel column cross-section.

general framework for parameterization of finite element models and response sensitivity compu-
tation [35].

Taking advantage of the modularity of FEDEASLab, a variety of suitable cross-sections (e.g.
composite cross-section with symmetric and unsymmetric steel I -beams) and material constitutive
models (e.g. Kent–Scott–Park concrete model, Popowics–Saenz concrete model with nonlinear
tension stiffening) were also implemented for response and response sensitivity computation. Thus,
a library of material and element models was implemented in FEDEASLab, which allows accurate
response and response sensitivity analyses of steel–concrete composite frame structures. This library
can be easily updated and/or extended to follow the state-of-the-art in modelling such structures.

4.3. Benchmark example: one-storey one-bay steel–concrete composite frame

The benchmark problem considered is a one-storey one-bay frame, made of two steel columns and
a steel–concrete composite beam (Figure 3). The column steel section is a European HE360A; the
composite beam consists of a European IPE300 steel section coupled to a
reinforced concrete slab 1000mm wide and 120mm thick through two rows of Nelson stud con-
nectors (Figure 4). Two identical layers of steel reinforcement with a total area As = 1000mm2

are present in the slab. Two loading conditions are considered: (1) pushover analysis (after static
application of a uniform distributed vertical load of 46 kN/m on the beam, representing self-weight,
permanent loads and live loads, a horizontal load of increasing magnitude is applied quasi-statically
at the beam–column nodes at the roof level, see Figure 3), and (2) earthquake base excitation (after
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Table I. Material constitutive parameters.

Material Parameter Value SI unit Description

fc 33.0 MPa Peak compressive strength
Ec 32 000 MPa Initial tangent stiffness
�c 0.0022 dimensionless Strain at peak strength

Concrete f f 15 MPa Strength at inflection point
� f 0.039 dimensionless Strain at inflection point

fys 275 MPa Yield strength
Es 210 000 MPa Young’s modulus

Hkin,s 2100 MPa Kinematic hardening modulus
Beam-and-column steel Hiso,s 0 MPa Isotropic hardening modulus

	0s 0 MPa Initial back-stress
bs 0.01 dimensionless Strain hardening ratio [5]
fyr 430 MPa Yield strength
Er 210 000 MPa Young’s modulus

Hkin,r 2100 MPa Kinematic hardening modulus
Reinforcement steel Hiso,r 0 MPa Isotropic hardening modulus

	0r 0 MPa Initial back-stress
br 0.01 dimensionless Strain hardening ratio [5]
fsmax 423 kN/m Shear strength

Shear connectors �fr 42.3 kN/m Residual frictional stress
�ult 6.0 mm Slip at rupture

static application of a uniform distributed vertical load of 46 kN/m on the beam, the frame is sub-
jected to a horizontal ground motion corresponding to the N90W (W-E) component of the Loma
Prieta earthquake of 17 October 1989, recorded at the Capitola site [36], scaled by a factor 4).

The structure is discretized into six finite elements, i.e. four elements for the steel–concrete
composite beam and one element for each steel column. The constitutive law used for the steel
material of the beam and of the two columns as well as for the reinforcement steel is a uniaxial
cyclic J2 plasticity model with the von Mises yield criterion in conjunction with linear kinematic
and isotropic hardening laws [5]. The selected constitutive law for the concrete material is a uniaxial
cyclic law with monotonic envelope given by the Popovics–Saenz law [37, 38]. The constitutive
law used for the shear connectors is a slip–force cyclic law with monotonic envelope given by the
Ollgaard et al. law [39] and a cyclic response following a modified version of the model proposed
by Eligenhausen et al. [40]. Detailed formulation and differentiation of the concrete and connection
constitutive laws can be found in Reference [41]. The values of the material constitutive parameters
are given in Table I. Reference [41] as well as Reference [32] also provide comparisons between
analytical predictions and experimental results for the response of steel-concrete composite beams
and frame structures modelled using a displacement-based frame element with deformable shear
connection.

In the following, numerical simulations of important global and local response quantities as well
as of their consistent sensitivities to various material parameters are presented for each of the two
loading conditions defined above. In this paper, the response sensitivity results are presented in
normalized form, i.e. they are multiplied by the nominal value of the sensitivity parameter and
divided by a factor 100. In this way, the normalized response sensitivities represent the variation of
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Figure 5. Pushover analysis: applied horizontal load P (total base shear) versus horizontal displacement
u1 at the left-end of the concrete slab.

the response quantity considered due to 1% change in the sensitivity parameter. These normalized
sensitivities can thus be used to compare (in the deterministic sense, or considering that 1% change
in the various sensitivity parameters are equally likely) the relative effects/importance of the
sensitivity parameters on the response quantities considered.

4.3.1. Response and response sensitivity analysis for quasi-static load case. The quasi-static
pushover analysis of the testbed structure defined above is performed using the force control
method. First, a vertical distributed load q = 46 kN/m along the beam is applied statically to the
structural model. Subsequently, a horizontal load P (Figure 3) of increasing magnitude is applied
quasi-statically to the two horizontal DOFs of the left-end node of the composite beam, until the
ultimate horizontal resisting force of the structure is reached (collapse state). The load P is equally
distributed between the two DOFs (i.e. P/2 to each DOF), in order to simulate an equivalent
earthquake loading for assumed equal tributary masses of the concrete slab and steel beam.

In Figure 5, the applied horizontal load P (representing also the total shear force at the base of the
columns) is plotted versus the horizontal displacement u1 (concrete slab DOF) of the left-end of the
composite beam. Figure 6 shows the relation between the load P and the vertical displacement v at
midspan of the composite beam. Figures 7 and 8plot the bendingmoment–curvature and shear force–
slip response curves, respectively, at the left-end section of the composite beam. Figure 5 clearly
shows the ductile behaviour of the considered structure that reaches a horizontal displacement u1
of about 30mm (P = 300 kN) without a sensible stiffness degradation (almost linear behaviour at
the global level, even though the local behaviour is strongly nonlinear from the beginning of the
analysis, see Figure 8), while the horizontal displacement at collapse is slightly below 150mm
(P = 575 kN). The change of stiffness around u1 = 45mm is mostly due to stiffness degradation
of the composite beam, while the change of stiffness around u1 = 100mm (P = 545 kN) is caused
primarily by yielding of the columns. This is consistent with the fact that this frame structure has
been designed for a ‘strong column–weak beam’ behaviour. In Figure 6, the changes in stiffness
mentioned above can be observed evenmore clearly: the vertical displacement v is almost unchanged
from the one produced by the vertical loads for an applied horizontal load P = 95 kN, then the same
stiffness changes as in Figure 5 are visible. It is noteworthy that the concrete never reaches its peak
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Figure 6. Pushover analysis: applied horizontal load P (total base shear) versus vertical displacement v
at midspan of the composite beam.
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Figure 7. Pushover analysis: moment–curvature response at the left-end section of the composite beam.
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Figure 8. Pushover analysis: shear force–slip response at the left-end section of the composite beam.
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Figure 9. Pushover analysis: sensitivities of horizontal displacement u1 to
beam-and-column steel material parameters.
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Figure 10. Pushover analysis: sensitivities of horizontal displacement u1 to
reinforcement steel material parameters.

compressive strength and the shear connectors do not fail before the entire structure reaches the
collapse state (structure tangent stiffness matrix nearly singular). The moment and shear force at the
left-end section of the composite beam change sign (compared with their values after application
of the gravity loads) during the pushover, as shown in Figures 7 and 8, respectively. In Figure 8,
a phase of reduced stiffness (pinching) is observed in the shear force-slip behaviour. This stiffness
reduction in the shear connection behaviour models the closing of voids/gaps and cracks due to the
inversion of the shear force.

Figures 9–28 present sensitivity results for the pushover analysis of the frame structure regard-
ing the global (u1 and v) and local (M and fs) response quantities defined previously. Figures
9–12 plot the response sensitivities of the horizontal displacement u1 to material parameters of
the steel material of the beam and columns, the reinforcement steel, the concrete and the shear
connection, respectively. Figure 13 shows a direct comparison of the sensitivities of the horizontal
displacement u1 to the strength parameters of the steel of the beam and columns ( fys), the concrete
( fc) and the shear connection ( fsmax). From these figures, it is observed that the response quantity
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Figure 11. Pushover analysis: sensitivities of horizontal displacement u1 to
concrete material parameters.
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Figure 12. Pushover analysis: sensitivities of horizontal displacement u1 to shear
connection material parameters.
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Figure 13. Pushover analysis: sensitivities of horizontal displacement u1 to strength
parameters of beam-and-column steel, concrete and shear connection.
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Figure 14. Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam
to beam-and-column steel material parameters.
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Figure 15. Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam
to reinforcement steel material parameters.
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Figure 16. Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam
to concrete material parameters.
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Figure 17. Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam
to shear connection material parameters.
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Figure 18. Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam
to strength parameters of beam-and-column steel, concrete and shear connection materials.
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Figure 19. Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam
section to beam-and-column steel material parameters.
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Figure 20. Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam
section to reinforcement steel material parameters.
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Figure 21. Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam
section to concrete material parameters.
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Figure 22. Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam
section to shear connection material parameters.
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Figure 23. Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam
section to strength parameters of beam-and-column steel, concrete and shear connection materials.
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Figure 24. Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite
beam section to beam-and-column steel material parameters.
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Figure 25. Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite
beam section to reinforcement steel material parameters.
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Figure 26. Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite
beam section to concrete material parameters.
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Figure 27. Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite
beam section to shear connection material parameters.
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Figure 28. Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite
beam section to strength parameters of beam-and-column steel, concrete and shear connection materials.
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u1 is more sensitive to material stiffness parameters (Es , Er , Ec) in the first phase of the analysis
(in which the global behaviour of the structure is almost linear), but becomes dominantly sensitive
to strength parameters ( fys, fyr, fc, fsmax) when the structure approaches its collapse state. It can
be seen that fys is the material parameter affecting the most the response quantity u1, especially
near the collapse load. Similarly, the response sensitivities to material parameters of the beam-and-
column steel material, the reinforcement steel, the concrete and the shear connection are displayed
in Figures 14–17 for the vertical displacement v, in Figures 19–22 for the bending moment M
acting at the left-end composite beam section and in Figures 24–27 for the shear force fs acting at
the left-end composite beam section, respectively. Figures 18, 23 and 28 compare the sensitivities to
material strength parameters fys, fc and fsmax of the vertical displacement v, the bending moment
M and the shear force fs , respectively. Among the material parameters considered, the parameter
that affects the most the vertical displacement v and the bending moment M is the yield strength
fys of the beam-and-column steel material, while the shear force fs is most affected by the shear
strength fsmax of the shear connection.

In addition, the above stand-alone sensitivity results allow the following considerations, useful
for gaining insight into the nonlinear response behaviour of the considered structure to quasi-static
pushover:

(a) Parameters � f and f f , describing the degrading branch of the concrete constitutive law, do
not affect the response behaviour of the considered frame. In fact, the concrete never reaches
its peak strength and therefore the response sensitivities with respect to � f and f f are equal
to zero for the entire pushover analysis. For this reason, these sensitivities are not plotted in
Figures 11, 16, 21 and 26.

(b) Parameter �fr (residual frictional stress per unit length of the shear connection [32]) does not
affect sensibly the response quantities considered (see Figures 12, 17, 22 and 27), consistently
with the fact that the shear connection does not reach failure (residual frictional state).

(c) Stiffness-related material parameters significantly affect the response at low loading levels,
while strength-related material parameters become predominant at high loading levels, par-
ticularly near failure (see in particular Figures 14–16). Sensitivity analysis not only confirms
this intuitive result, but also allows to precisely quantify the effects and relative importance
of the different material parameters at different loading stages.

Figures 29–31 present the results of a convergence study of the sensitivities of the horizontal
displacement u1 computed through the forward FDM (using increasingly small ��/� ratio) to
the sensitivity results obtained using the DDM, for material parameters fys, fc and fsmax, re-
spectively. Results of the same convergence study are shown in Figures 32–34 for sensitivities
of the connection shear force fs acting at the left-end composite beam section to the same ma-
terial parameters fys, fc and fsmax. The insets in Figures 29–34 show zoom views that allow
to better appreciate the convergence trends. In these figures, the results corresponding to three
different values of parameter perturbation (i.e. 10−1, 10−2 and 10−5 of the nominal value of
the considered parameter) are plotted together with the exact DDM sensitivities. These values
of the ��/� ratio have been carefully selected in order to obtain a clear visual display of the
convergence trends, and particular attention has been given in choosing the lower value of pa-
rameter perturbation so as to avoid numerical problems related to round-off errors (‘step-size
dilemma’, see References [5, 6, 8, 32, 42]). Convergence studies for other response quantities and
other material parameters have also been performed, giving similar results in terms of conver-
gence of forward FDM computations to DDM sensitivities for decreasing parameter perturbation
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Figure 29. Convergence study of forward FDM to DDM sensitivity results for pushover analysis: sensitivities
of horizontal displacement u1 to yielding strength fys of beam-and-column steel material.
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Figure 30. Convergence study of forward FDM to DDM sensitivity results for pushover analysis:
sensitivities of horizontal displacement u1 to peak strength fc of concrete material.

values [41]. These convergence results validate the DDM-based algorithms for response sensitivity
computation presented in this paper and their computer implementation for finite elements based
on the three-field mixed formulation in the case of quasi-static structural analysis.

4.3.2. Response and response sensitivity analysis for dynamic load case. In dynamic analysis, the
inertia and damping properties of the structure must also be included in the model. The total mass of
the frame has been discretized into translational (horizontal and vertical) masses lumped at the two
external nodes of each composite beam element. The mass corresponding to the permanent and live
loads (i.e. total vertical distributed load of 40 kN/m) was distributed evenly between the slab and
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Figure 31. Convergence study of forward FDM to DDM sensitivity results for pushover analysis:
sensitivities of horizontal displacement u1 to shear strength fsmax of shear connection material.
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Figure 32. Convergence study of forward FDM to DDM sensitivity results for pushover
analysis: sensitivities of connection shear force fs acting at the left-end composite beam

section to yield strength fys of beam-and-column steel material.

steel beam and added to the self-weight (5 kN/m for the slab and 1 kN/m for the beam). Half of the
mass corresponding to the self-weight of the columns was added to the DOFs at the nodes where
steel beam and column are connected. With this assumed distribution of masses, an eigenanalysis
was performed using the initial stiffness properties of the structure. The first vibration mode of
period T1 = 0.30 s corresponds to a horizontal translation of the entire composite beam, while the
second and third modes of vibration of period T2 = 0.18 s and T3 = 0.13 s, respectively, correspond
to vertical motions. The other modes of vibration correspond to axial compression-tension modes
in the composite beams and vertical modes of the frame; they are all characterized by short periods
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Figure 33. Convergence study of forward FDM to DDM sensitivity results
for pushover analysis: sensitivities of connection shear force fs acting at the

left-end composite beam section to peak strength fc of concrete material.
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Figure 34. Convergence study of forward FDM to DDM sensitivity results for pushover
analysis: sensitivities of connection shear force fs acting at the left-end composite beam

section to shear strength fsmax of shear connection material.

and small modal participating masses. From the modal analysis results, a Rayleigh-type damping
matrix [43], proportional to the time-invariant mass and initial stiffness matrices, was computed
based on an assumed damping ratio � = 0.05 for the first and third modes.

After static application of a vertical distributed load of 46 kN/m along the beam, the frame
is subjected to a horizontal seismic motion corresponding to the first 30 s of the N90W (W-E)
component of the Loma Prieta earthquake of 17 October 1989, recorded at the Capitola site [36],
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Figure 35. N90W (W-E) component of the Loma Prieta earthquake of 17 October 1989, recorded at the
Capitola site, scaled by a factor of four.
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Figure 36. Dynamic analysis: horizontal displacement u1 response history.

scaled by a factor of four to yield a peak ground acceleration of 6160mm/s2 or 0.62g (see Figure
35), and with 2 s of zero ground motion acceleration added at the end of the record in order to
capture the free-vibration properties of the structure with yielded/degraded material properties at
the end of the earthquake. The equation of motion and response sensitivity equation are integrated
using the constant-average-acceleration method [43] with a constant time step of �t = 0.005 s. The
following figures present results of the response history analysis performed.

Figures 36 and 37show the time histories of the horizontal displacement u1 and vertical dis-
placement v, respectively. The moment–curvature response at the left-end composite beam section
is plotted in Figure 38, while the shear force–slip response at the same section is given in Fig-
ure 39. During the earthquake ground motion, extensive plastic behaviour is developed by the
structure. In particular, the vertical displacement v exhibits a large increase due to inelastic defor-
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Figure 37. Dynamic analysis: vertical displacement v response history.
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Figure 38. Dynamic analysis: moment–curvature response at the left-end section of the composite beam.
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Figure 39. Dynamic analysis: shear force–slip response at the left-end section of the composite beam.
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Figure 40. Dynamic analysis: sensitivity of horizontal displacement u1 to Young’s modulus Es of the
beam-and-column steel material.
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Figure 41. Dynamic analysis: sensitivity of horizontal displacement u1
to Young’s modulus Er of reinforcement steel material.

mation at around t = 7 s (Figure 37) and the hysteretic behaviour of the shear force–slip response
is pronounced (Figure 39). From Figure 36, it can be seen that the maximum horizontal displace-
ment (47mm) is moderately large (corresponding to an interstory drift ratio of 1.2%) and the frame
exhibits a small permanent horizontal deformation at the end of the earthquake. While the moment–
curvature response at the section level (Figure 38) remains quasi-linear during application of the
gravity loads, the hysteretic behaviour is significant during the earthquake response including some
degradation of the flexural capacity. The curvature ductility (defined as ratio between the maximum
curvature and the curvature at yielding) is about five (see Figure 38). It is noteworthy that the struc-
tural performance of the present benchmark steel-concrete composite frame, when subjected to the
earthquake excitation considered, is satisfactory since the plastic behaviour is limited to the beam,
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Figure 42. Dynamic analysis: sensitivity of horizontal displacement u1 to initial
tangent stiffness Ec of concrete material.
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Figure 43. Dynamic analysis: sensitivity of horizontal displacement u1 to shear
strength fsmax of shear connection material.

the permanent deformations are small and brittle failure mechanisms (such as concrete crushing
and rupture of the shear connection) are avoided.

Figures 40–43 show the normalized sensitivities of the horizontal displacement u1 to Young’s
modulus Es of the beam-and-column steel, Young’s modulus Er of the reinforcement steel, the
initial tangent stiffness Ec of concrete, and the strength fsmax of the shear connection, respectively.
The choice of plotting these sensitivities is driven by the fact that, for the dynamic case, material
stiffness related parameters affect the horizontal displacement u1 more than strength related param-
eters. This is shown in Figure 44, which compares the sensitivities of the horizontal displacement
u1 to the material parameters affecting the most this response quantity. The response sensitivity his-
tories are observed to have similar waveforms (frequency content) to that of the time history of u1
and exhibit a small shift in their mean value. This feature is linked to the material constitutive laws
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Figure 44. Dynamic analysis: comparison of sensitivities of horizontal displacement u1 to material
parameters to which u1 is most sensitive.

0 5 10 15 20 25 30

2

1

0

0.1

0.2

0.3

0.4

0.5

t [s]

(d
v 

⁄ d
E

s)(
E

s ⁄
 1

00
) [

m
m

]

Figure 45. Dynamic analysis: sensitivity of vertical displacement v at midspan of composite beam to
Young’s modulus Es of the beam-and-column steel material.

employed: all these constitutive laws (except for the concrete constitutive model beyond the peak
strength, which was not reached in the dynamic load case presented here) use the initial tangent
stiffness for unloading from plastic branches, and thus the effective first period of vibration of the
structure remains close to the initial fundamental period even after large plastic deformations are
experienced by the structure (waveform similarity). The small shift in mean value of the response
sensitivities is due to the hysteretic nature of the material constitutive laws.

Figure 45 shows the sensitivity of the vertical displacement v at midspan of the composite
beam to Young’s modulus Es of the beam-and-column steel material, while Figure 46 compares
the sensitivities of v to the material parameters to which this response quantity is most
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Figure 46. Dynamic analysis: comparison of sensitivities of vertical
displacement v to material parameters to which v is most sensitive.
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Figure 47. Dynamic analysis: sensitivity of bending moment M acting at the left-end section of the
composite beam to Young’s modulus Es of the beam-and-column steel material.

sensitive. Similarly, Figure 47 shows the sensitivity of the bending moment M acting at the
left-end composite beam section to Young’s modulus Es of the beam-and-column steel mate-
rial and Figure 48 compares the sensitivities of M to material parameters to which M is most
sensitive. Figure 49 shows the sensitivity of the shear force fs acting at the left-end composite
beam section to Young’s modulus Es of the beam-and-column steel material, while Figure 50
compares the sensitivities of fs to material parameters to which fs is most sensitive. The material
parameter affecting the most the bending moment M and the shear force fs is Young’s modu-
lus Es of the beam-and-column steel material, while the material parameter to which the vertical
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Figure 48. Dynamic analysis: comparison of sensitivities of bending moment M acting at the left-end
composite beam section to material parameters to which M is most sensitive.
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Figure 49. Dynamic analysis: sensitivity of connection shear force fs acting at the left-end section of the
composite beam to Young’s modulus Es of the beam-and-column steel material.

displacement v is most sensitive is the yield strength fys of the beam-and-column steel material.
The dynamic response sensitivity analysis shows that the global and local responses of the
considered structure are most sensitive to the material parameters describing the constitutive law
of the beam-and-column steel material, as was already the case for the pushover loading and as
expected from design considerations.

Figure 51 shows the sensitivities of the vertical displacement v to the yield strength fys of the
beam-and-column steel material computed using both DDM and forward FDM for
decreasing values of the parameter perturbation. Figure 52 shows a closer view of the conver-
gence of the forward FDM results to the DDM results. Similarly, the sensitivities of the bending
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Figure 50. Dynamic analysis: comparison of response sensitivities of connection shear force fs acting at
the left-end composite beam section to material parameters to which fs is most sensitive.
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Figure 51. Convergence study of forward FDM to DDM sensitivity results for dynamic
analysis: sensitivity of vertical displacement v at midspan of composite beam to yield strength

fys of the beam-and-column steel material.

moment M to the yield strength fys, computed via the forward FDM for decreasing values of the
parameter perturbation are plotted in Figure 53 together with the corresponding response sensitivity
computed using the DDM. Figure 54 offers a zoom view of the previous figure, showing again
convergence of the forward FDM results to the DDM results. These results, together with the
results of other convergence studies (not shown here) performed by the authors for the sensitivities
of other response quantities to all the material parameters considered in this paper, validate the
DDM-based algorithms for response sensitivity computation presented in this paper and their com-
puter implementation for finite elements based on the three-field mixed formulation in the cases of
quasi-static and dynamic structural analysis.
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Figure 52. Convergence study of forward FDM to DDM sensitivity results for dynamic analysis:
zoom view of sensitivity of vertical displacement v at midspan of composite beam to yield strength

fys of the beam-and-column steel material (see Figure 51).
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Figure 53. Convergence study of forward FDM to DDM sensitivity results for dynamic analysis:
sensitivity of bending moment M acting at the left-end composite beam section to yield

strength fys of beam-and-column steel material.

5. CONCLUSIONS

This paper presents a newly developed response sensitivity computation methodology for non-
linear finite element based on a three-field mixed formulation derived from the Hu–Washizu
functional. The formulation developed is based on the general DDM, which consists of differ-
entiating consistently the space (finite element) and time (finite difference) discrete equations
of the structural response. The response sensitivity computation algorithm for three-field mixed
finite element formulation is presented for the general case of geometric and material nonlin-
earities considering response sensitivity to geometric, material and loading parameters. This gen-
eral algorithm is then specialized for materially only nonlinear finite element models (i.e. linear
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Figure 54. Convergence study of forward FDM to DDM sensitivity computations for dynamic analysis:
zoom view sensitivity of bending moment M acting at the left-end composite beam section to yield strength

fys of beam-and-column steel material (see Figure 53).

geometry) and is presented in detail for 2-D frame finite elements. Particular attention is given to
steel–concrete composite frame finite elements, for which the three-field mixed formulation has
been found beneficial in terms of accuracy in the numerical results. The DDM sensitivity computa-
tions are validated by comparisons with the forward FDM using as application example a realistic
steel–concrete composite frame under quasi-static and dynamic loading. The finite element model
of the proposed benchmark structure includes both monolithic beam elements and composite beam
elements with deformable shear connection based on the three-field mixed formulation. Insight is
gained into the effects and relative importance of the various material parameters upon the response
behaviour of the benchmark structure.

The addition of the method presented here for analytical sensitivity computation to finite elements
based on a three-field mixed formulation offers a powerful tool for any kind of applications in
which finite element response sensitivity analysis results are needed. These applications include
structural reliability, structural optimization, structural identification, and finite element model
updating. Furthermore, finite element response sensitivity analysis offers insight into structural
response behaviour and its sensitivity to modelling parameters.

APPENDIX A

Equation (68) is obtained by differentiating Equation (62) with respect to � as

E
de(�)

d�
− B

dq(�)

d�
= 0 ⇒ E

de(�)
d�

= B
dq(�)

d�
(A1)

Pre-multiplying both sides of the second of Equations (A1) by D−1
t ETD−1

t , we obtain

D−1
t ETD−1

t E
de(�)

d�
=D−1

t ETD−1
t B

dq(�)

d�
(A2)
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Using the definition of Dt in Equation (70), we have

Is =DtD−1
t =ED−1

t ETD−1
t (A3)

where Is denotes the unit matrix of dimension ns × ns .
Post-multiplying the first and last terms of Equation (A3) by E, we have

IsE=ED−1
t ETD−1

t E ⇒ E=E(D−1
t ETD−1

t E) (A4)

from which it can be deduced that

D−1
t ETD−1

t E= Ie (A5)

where Ie denotes the unit matrix of dimension ne × ne. Thus, Equation (A2) reduces to
Equation (68).

Equation (74) can be derived following a reasoning similar to the one above. Differentiating
Equation (63) with respect to � yields

ET ds(e(�), �)

d�
= da(e(�), �)

d�
(A6)

Pre-multiplying both sides of Equation (A6) by D−1
t ED−1

t , we obtain

D−1
t ED−1

t ET ds(e(�), �)

d�
=D−1

t ED−1
t

da(e(�), �)

d�
(A7)

Using again Equation (70), we can write

Is =D−1
t Dt =D−1

t ED−1
t ET (A8)

from which Equation (A7) reduces to Equation (74).
Equations (35) and (43) in Section 3.1 can be derived following the same reasoning used above

for Equations (68) and (74), respectively.

APPENDIX B

In this appendix, explicit expressions for the quantities d, D, and As(X) introduced in
Section 3.3 are given for three important 2-D frame models: (a) Euler–Bernoulli monolithic beam;
(b) Timoshenko monolithic beam; and (c) composite beam with distributed shear connection and
Newmark’s kinematic assumptions. The extension to 3-D frames is straightforward for the mono-
lithic beams but more complicated for the composite beam with deformable shear connection [27].

(a) Euler–Bernoulli monolithic beam (Figure B1):

As(x, y, �) = [1 −y] (B1)

e(X, �) ≡ �x (x, y, �), r(X, �) ≡ 
x (x, y, �) (B2)
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Figure B1. Kinematics of 2-D monolithic Euler–Bernoulli beam model.
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Figure B2. Kinematics of 2-D monolithic Timoshenko beam model.

d(x, �) =
[

�G(x, �)

�(x, �)

]
(B3)

D(x, �) =
[
N (x, �)

M(x, �)

]
(B4)

(b) Timoshenko monolithic beam (Figure B2):

As(x, y, �) =
[
1 −y 0

0 0 1

]
(B5)

e(X, �) ≡
[

�x (x, y, �)

�xy(x, y, �)

]
, r(X, �) ≡

[

x (x, y, �)

�xy(x, y, �)

]
(B6)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:114–161
DOI: 10.1002/nme



GENERAL THEORY AND APPLICATION TO FRAME STRUCTURES 159

d(x, �) =

⎡
⎢⎢⎣

�G(x, �)

�(x, �)

�(x, �)

⎤
⎥⎥⎦ (B7)

D(x, �) =

⎡
⎢⎢⎣

N (x, �)

M(x, �)

V (x, �)

⎤
⎥⎥⎦ (B8)

(c) Newmark composite beam (Figure 1):

As(x, y, �) =

⎡
⎢⎢⎣
1 0 (y1 − y) 0

0 1 (y2 − y) 0

0 0 0 1

⎤
⎥⎥⎦ (B9)

e(X, �) ≡

⎡
⎢⎢⎣

�x1(x, y, �)

�x2(x, y, �)

�s(x, �)

⎤
⎥⎥⎦ 
(X, �) ≡

⎡
⎢⎢⎣


x1(x, y, �)


x2(x, y, �)

fs(x, �)/A(x)

⎤
⎥⎥⎦ (B10)

d(x, �) =

⎡
⎢⎢⎢⎢⎢⎣

�x1(x, �)

�x2(x, �)

�(x, �)

�s(x, �)

⎤
⎥⎥⎥⎥⎥⎦ (B11)

D(x, �) =

⎡
⎢⎢⎢⎢⎢⎣

N1(x, �)

N2(x, �)

M12(x, �)

fs(x, �)

⎤
⎥⎥⎥⎥⎥⎦ (B12)
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