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a b s t r a c t

Spectral characteristics are important quantities in describing stationary and non-stationary random
processes. In this paper, the spectral characteristics for complex-valued random processes are evaluated
and closed-form solutions for the time-variant statistics of the response of linear single-degree-of-
freedom (SDOF ) and both classically and non-classically damped multi-degree-of-freedom (MDOF )
systems subjected to modulated Gaussian colored noise are obtained. The time-variant central frequency
and bandwidth parameter of the response processes of linear SDOF andMDOF elastic systems subjected
to Gaussian colored noise excitation are computed exactly in closed-form. These quantities are useful in
problems which require the use of complex modal analysis, such as random vibrations of non-classically
damped MDOF linear structures, and in structural reliability applications. Monte Carlo simulation has
been used to confirm the validity of the proposed solutions.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic behavior of structural and mechanical systems
subjected to uncertain dynamic excitations can be described, in
general, through random processes. The probabilistic characteri-
zation of these randomprocesses can be extremely complex, when
non-stationary and/or non-Gaussian input processes are involved.
In specific applications, an incomplete description of stochastic
processes corresponding to dynamic structural response may suf-
fice, based on the spectral characteristics of the processes under
study [1,2]. For stationary stochastic processes, the spectral char-
acteristics are defined as the geometric spectral moments of their
power spectral density (PSD) function [1,2]. On the other hand,
the so-called non-geometric spectral characteristics (NGSCs) [3–5]
can be employed to evaluate the time-variant central frequency
and bandwidth parameters, which characterize in a synthetic way
a non-stationary stochastic process (NSSP). The NGSCs have been
proved appropriate for describingNSSPs and can be effectively em-
ployed in structural reliability applications, such as the compu-
tation of the time-variant probability that a random process out-
crosses a given limit-state threshold [6]. In this paper, using the
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definition of NGSCs for general complex-valued NSSPs and com-
plex modal analysis proposed in [5], closed-form solutions for the
NGSCs of NSSPs representing the response of linear elastic struc-
tural models subjected to time-modulated colored noises are ob-
tained. It is noteworthy that, while closed-form solutions have
been available for more than two decades for the simpler case of
geometric spectral moments of stationary stochastic processes [7,
8], closed-form solutions for the NGSCs of non-stationary response
processes of linear systems are very recent for the case of time-
modulated white noise inputs [5] and, to the authors’ knowl-
edge, are presented in this paper for the first time for the case
of time-modulated colored noise inputs. These NGSCs are used
in this study to compute exactly and in closed-form the time-
variant central frequency and bandwidth parameter of the re-
sponse processes of single-degree-of-freedom (SDOF ) and both
classically and non-classically damped multidegree-of-freedom
(MDOF ) linear elastic systems subjected to colored noise excita-
tion from at rest initial conditions. These closed-form solutions
are useful in problems which require the use of complex modal
analysis, such as random vibrations of non-classically damped
MDOF linear structures, and in structural reliability applications [9,
10]. For the sake of simplicity and without loss of generality, all
random processes considered in this study are zero-mean pro-
cesses. For these processes, the auto- and cross-covariance func-
tions coincide with their auto- and cross-correlation functions,
respectively.
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2. Central frequency and bandwidth parameters of non-
stationary stochastic processes

A non-stationary stochastic process (NSSP) X(t) can be
expressed in the general form of a Fourier–Stieltjes integral as [1]

X(t) =
∫
∞

−∞

AX (ω, t)ejωtdZ(ω) (1)

in which t = time, ω = frequency parameter, j =
√
−1,

AX (ω, t) = complex-valued deterministic time–frequency mod-
ulating function and dZ(ω) = zero-mean orthogonal-increment
process defined so that E[dZ∗(ω1)dZ(ω2)] = Φ(ω1)δ(ω1 −
ω2)dω1dω2, where E[·] =mathematical expectation,Φ(ω) = PSD
function of the embedded stationary process XS(t), δ(·) = Dirac
delta function and the superscript (·)∗ denotes the complex-
conjugate operator. The process X(t) has the following evolution-
ary power spectral density (EPSD) function:

ΦXX (ω, t) = A∗X (ω, t)Φ(ω)AX (ω, t). (2)

It is also convenient to define the process Y (t) as the modulation
(with modulating function AX (ω, t)) of the stationary process
YS(t) defined as the Hilbert transform of the embedded stationary
process XS(t) [11,12], i.e.,

Y (t) = −j
∫
∞

−∞

sign(ω)AX (ω, t)ejωtdZ(ω). (3)

For each NSSP X(t), two sets of non-geometric spectral character-
istics (NGSCs) can be defined as follows [5]
cik,XX (t) =

∫
∞

−∞

ΦX(i)X(k)(ω, t)dω = σX(i)X(k)(t)

cik,XY (t) =
∫
∞

−∞

ΦX(i)Y (k)(ω, t)dω = σX(i)Y (k)(t)
(4)

where σX(i)X(k)(t) = cross-covariance of random processes X
(i)(t)

andX (k)(t), andσX(i)Y (k)(t)= cross-covariance of randomprocesses
X (i)(t) and Y (k)(t), in which

W (m)(t) =
dmW (t)
dtm

, W = X, Y ; m = i, k. (5)

The evolutionary cross-PSD functions ΦX(i)W (k)(ω, t) (W = X, Y
and i, k = 0, 1, . . .) are given by

ΦX(i)W (k)(ω, t) = A
∗

X(i)(ω, t)Φ(ω)AW (k)(ω, t) (6)

where [13]

AW (i)(ω, t) = e
−jωt ∂

i

∂t i
[AW (ω, t)ejωt ]. (7)

Herein, it is assumed that the time-derivative processes in Eq. (4)
exist in themean-square sense. In the particular casewhen i = k =
n, the cross-covariance in Eq. (4)1 reduces to the variance of the nth
time-derivative of the process X(t), i.e., σX(n)X(n)(t) = σ

2
X(n)
(t).

The four NGSCs c00,XX (t), c11,XX (t), c01,XX (t) and c01,XY (t) are
particularly relevant to random vibration theory and time-variant
reliability applications. In fact, c00,XX (t) and c11,XX (t) represent the
variance of the process and its first time-derivative (i.e., σ 2X (t)
and σ 2

Ẋ
(t)), respectively, c01,XX (t) denotes the cross-covariance of

the process and its first time derivative (i.e., σXẊ (t)), and c01,XY (t)
represents the cross-covariance of the process X(t) and the first
time-derivative of the process Y (t) (i.e., σXẎ (t)). Notice that the
definitions in Eq. (5) for c00,XX (t), c11,XX (t), c01,XX (t) and c01,XY (t)
are valid for both real-valued and complex-valued NSSPs [5]. In the
case of real-valued NSSPs, these definitions are equivalent to the
oneproposed in [3,4]. TheNGSCs c00,XX (t), c11,XX (t) and c01,XY (t) are
used in the definition of the time-variant central frequency, ωc(t),
and bandwidth parameter, q(t), of the NSSP X(t) as [5]
ωc(t) =
c01,XY (t)
c00,XX (t)

=
σXẎ (t)
σ 2X (t)

(8)

q(t) =

(
1−

c201,XY (t)

c00,XX (t)c11,XX (t)

)1/2
=

(
1−

σ 2
XẎ
(t)

σ 2X (t)σ
2
Ẋ
(t)

)1/2
. (9)

The time-variant central frequency and bandwidth parameter are
useful in describing the time-variant spectral properties of a real-
valued NSSP X(t). The central frequency ωc(t) provides the char-
acteristic/predominant frequency of the process at each instant of
time. The bandwidth parameter q(t) provides information on the
spectral bandwidth of the process at each instant of time. Notice
that a NSSP can behave as a narrowband and a broadband pro-
cess at different instants of time. For complex-valued NSSPs, the
complex-valued central frequency and bandwidth parameter de-
fined in Eqs. (8) and (9) lose the simple physical interpretation
available for real-valued NSSPs, even though their computation is
instrumental to the solution of problems requiring a state-space
representation. In addition, the bandwidth parameter q(t) plays an
important role in time-variant reliability analysis, since it is an es-
sential ingredient of analytical approximations to the time-variant
failure probability for the first-passage reliability problem [9,10,
13–17].

3. Spectral characteristics of the stochastic response of
SDOF/MDOF linear system subjected to non-stationary excita-
tions

3.1. Complex modal analysis

A state-space formulation of the equations of motion for a
linear MDOF system is useful to describe the response of both
classically and non-classically damped systems [18]. The general
(second-order) equations of motion for an n-degree-of-freedom
linear system are, in matrix form,

MÜ+ CU̇+ KU = PF(t) (10)
where M, C, and K = n × n time-invariant mass, damping and
stiffness matrices, respectively; U(t) = length-n vector of nodal
displacements, P= length-n load distribution vector, F(t)= scalar
function describing the time-history of the external loading
(random process), and a superposed dot denotes differentiation
with respect to time. The matrix equation of motion Eq. (10) can
be recast into the following first-order matrix equation

Ż = GZ+ P̃F(t) (11)
where

Z =
[
U
U̇

]
(2n×1)

(12)

G =
[
0n×n In×n
−M−1K −M−1C

]
(2n×2n)

(13)

P̃ =
[
0n×1
M−1P

]
(2n×1)

. (14)

The subscripts in Eqs. (12)–(14) indicate the dimensions of the
vectors and matrices to which they are attached. Using the
complex modal matrix T formed from the complex eigenmodes of
matrix G, the first-ordermatrix equation Eq. (11) can be decoupled
into the following 2n normalized complex modal equations

Ṡi(t) = λiSi(t)+ F(t), i = 1, 2, . . . , 2n (15)
where S = [S1(t)S2(t) · · · S2n(t)]T = normalized complex modal
response vector, λi (i = 1, . . . , 2n) = complex eigenvalues of
the system matrix G, and the superscript (·)T denotes the matrix
transpose operator. The response of the linear MDOF system can
be obtained as
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Z(t) = TΓ S(t) = T̃S(t) (16)
in which Γ = diagonal matrix containing the 2n modal partici-
pation factors Γi, defined as the ith component of vector T−1P̃ =
[Γ1Γ2 · · ·Γ2n]

T, and T̃ = TΓ = effective modal participation ma-
trix. Assuming that the system is initially at rest, the solution of Eq.
(15) can be expressed by the following Duhamel integral:

Si(t) =
∫ t

0
eλi(t−τ)F(τ )dτ , i = 1, 2, . . . , 2n. (17)

It is worth mentioning that the normalized complex modal
responses Si(t), i = 1, 2, . . . , 2n, are complex conjugate by pairs.
In the case of a non-stationary loading process, the loading function
F(t) can be expressed in general as (see Eq. (1))

F(t) =
∫
∞

−∞

AF (ω, t)ejωtdZ(ω). (18)

It can be shown that the normalized complex modal responses are
given by

Si(t) =
∫
∞

−∞

ASi(ω, t)e
jωtdZ(ω), i = 1, 2, . . . , 2n (19)

where

ASi(ω, t) =
∫ t

−∞

e(λi−jω)(t−τ)AF (ω, τ)dτ , i = 1, 2, . . . , 2n. (20)

3.2. NGSCs of response processes of linear MDOF systems using
complex modal analysis

The state-space formulation of the equations of motion is
also advantageous for the computation of the NGSCs of response
processes of both classically and non-classically damped linear
MDOF systems. If only Gaussian input processes are considered,
only few spectral characteristics are needed to fully describe
the response processes of linear elastic MDOF systems, since the
response processes are also Gaussian. In particular, if Ui(t) denotes
the ith DOF displacement response process of a linear elastic
MDOF system subjected to Gaussian excitation, the only spectral
characteristics required, e.g., for reliability applications, are (i =
1, 2, . . . , n)
c00,UiUi(t) = σ

2
Ui(t)

c11,UiUi(t) = σ
2
U̇i
(t)

c01,UiUi(t) = σUiU̇i(t)
c01,UiYi(t) = σUiẎi(t)

(21)

where Ẏi is the first time-derivative of the process Yi defined as
(see Eq. (3) and [11,12])

Y(t) = −j
∫
∞

−∞

sign(ω)AUi(ω, t)e
jωtdZ(ω), i = 1, 2, . . . , n (22)

and AUi(ω, t) = time–frequency modulating function of the
process Ui(t). The following auxiliary state vector process can be
defined, similarly to the response processes (see Eq. (12)), as

Ξ =

[
Y
Ẏ

]
(2n×1)

. (23)

Using complex modal decomposition, the cross-covariance matri-
ces of the response processes and the auxiliary processes can be
computed as

E[Z(t)ZT(t)] = T̃
∗

E[S∗(t)ST(t)]T̃
T

(24)

E[Z(t)ΞT(t)] = T̃
∗

E[S∗(t)ΣT(t)]T̃
T

(25)
where the components of the vector processΣ = [Σ1(t)Σ2(t) · · ·
Σ2n(t)]T are defined as
Σi(t) = −j
∫
∞

−∞

sign(ω)ASi(ω, t)e
jωtdZ(ω), i=1, 2, . . . , n. (26)

Eqs. (24) and (25) show that all quantities in Eq. (21) can be
computed from the following spectral characteristics of complex-
valued non-stationary processes (i,m = 1, 2, . . . , 2n){
E[S∗i (t)Sm(t)] = σSiSm(t)
E[S∗i (t)Σm(t)] = σSiΣm(t).

(27)

Notice also that knowledge of the spectral characteristics in Eq.
(27) allows computation of the zero-th to second-order spectral
characteristics of the components of any vector response quantity
Q(t) linearly related to the displacement response vector U(t),
i.e., Q(t) = BU(t), where B= constant matrix.

3.3. Response statistics of MDOF linear systems subjected to modu-
lated colored noise

Time-modulated colored noises constitute an important and
widely used class of non-stationary dynamic load processes. The
expression given in Eq. (18) describing a general non-stationary
loading process reduces to

F(t) = AF (t)P(t) (28)

where the time-modulating function AF (t) is frequency-
independent and the process P(t) is a colored noise with PSD func-
tion having the following general expression (i.e., rational func-
tion)

ΦP(ω) = S0
N∑
k=1

Ak
(ω − ω̄k)

(29)

where Ak and ω̄k (k = 1, 2, . . . ,N) = complex-valued constants
and S0 = real-valued scaling constant. In the sequel, it is assumed
that the time-modulating functions have the following general
expression

AF (t) = H(t)
M∑
q=1

aqebqt (30)

in which aq and bq (q = 1, 2, . . . ,M) = real-valued constants, and
H(t)= unit-step function.
Substituting Eq. (30) into Eq. (20) yields (i = 1, 2, . . . , 2n)

ASi(ω, t) = j
M∑
q=1

{
aqebqt

[
e−j(ω−ωiq)t − 1
ω − ωiq

]}
(31)

where ωi = −jλi and ωiq = ωi + jbq. The spectral characteristics
defined in Eq. (27)1 can be computed using Cauchy’s residue
theorem as [19] (i,m = 1, 2, . . . , 2n)

σSiSm(t) = S0
M∑
q=1

M∑
s=1

N∑
k=1

aqasAke(bq+bs)t
{[
ej(ωms−ω

∗
iq)t + 1

]
× I iq,ms,k1 − e−jω

∗
iqt I iq,ms,k2 − ejωmst I iq,ms,k3

}
(32)

in which

I iq,ms,k1 = 2π j
3∑
r=1

Biq,ms,kr I(ω̃r) (33)

I iq,ms,k2 = 2π j
3∑
r=1

Biq,ms,kr ejω̃r t I(ω̃r) (34)

I iq,ms,k3 = −2π j
3∑
r=1

Biq,ms,kr e−jω̃r t I(−ω̃r) (35)

where ω̃1 = ω∗iq, ω̃2 = ωms, ω̃3 = ω̄k and
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Biq,ms,kr =
1

(ω̃r − ω̃p)(ω̃r − ω̃q)
, r, p, q = 1, 2, 3, r 6= p 6= q (36)

while

I(ω) = max
[
=(ω)

|=(ω)|
, 0
]

(37)

and =(·)= imaginary part of the quantity in parentheses. Madsen
and Krenk [20] and Krenk and Madsen [21,22] applied the same
approach (integration using Cauchy’s residue theorem) to the
real-valued (second-order) modal responses to derive the closed-
form solutions for the auto- and cross-correlation functions of the
response processes of classically damped MDOF linear systems
subjected to white noise excitations modulated by rational time-
modulating functions. After extensive algebraicmanipulations (see
Appendix), the spectral characteristics in Eq. (27)2 are obtained as
(i,m = 1, 2, . . . , 2n)

σSiΣm(t) = −jS0
M∑
q=1

M∑
s=1

N∑
k=1

aqasAke(bq+bs)t
{[
ej(ωms−ω

∗
iq)t + 1

]
× J iq,ms,k1 − e−jω

∗
iqt J iq,ms,k2 − ejωmst J iq,ms,k3

}
(38)

in which

J iq,ms,k1 = −

3∑
r=1

{
Biq,ms,kr

[
log(ω̃r)+ log(−ω̃r)

]}
(39)

J iq,ms,k2 = 2
3∑
r=1

Biq,ms,kr

{
ejω̃r t

[
E1(jω̃r t)+ jπ I(ω̃r)sign(R(ω̃r))

]}
(40)

J iq,ms,k3 = 2
3∑
r=1

Biq,ms,kr

{
e−jω̃r t

[
E1(−jω̃r t)

− jπ I(−ω̃r)sign(R(ω̃r))
]}

(41)

where E1(·) denotes the integral exponential function defined
as [23]

E1(x) =
∫
∞

x

e−u

u
du, | arg(x)| < π (42)

andR(·)= real part of the quantity in parentheses. It is noteworthy
that the closed-formexact solutions presented here for the spectral
characteristics of MDOF linear system response processes are
valid for any kind of time-modulated colored noise excitation as
described by Eqs. (28)–(30). On the other hand, the considered
description of these response processes includes only first and
second order statistical moments and thus is complete only for
Gaussian response processes, which are obtained only if the
input process is a time-modulated Gaussian colored noise. In the
sequel of the paper, only time-modulated Gaussian colored noise
excitations are considered.

4. Applications

4.1. Colored noise model

A special important case of colored PSD is

ΦP(ω) =
νS0
2π

[
1

ν2 + (ω + η)2
+

1
ν2 + (ω − η)2

]

=
jS0
4π

4∑
k=1

[
(−1)k

(ω − ω̄k)

]
(43)

where ω̄1 = −ω̄4 = −η + jν, ω̄2 = −ω̄3 = −η − jν, and η, ν =
parameters defining the shape of the PSD. Eq. (43) is a special case
of Eq. (29) with N = 4 and Ak = (−1)kj/(4π), k = 1, 2, 3, 4. This
Fig. 1. PSD defined by Eq. (43) for varying values of η and ν.

Fig. 2. Shinozuka and Sato’s modulating function.

PSD allows representation of extremely different colored noise
processes (Fig. 1) and is widely used for earthquake [13] and fluid
dynamics applications.

4.2. Modulating function of Shinozuka and Sato

The modulating function of Shinozuka and Sato [24] is defined
as

AF (t) = C
[
e−B1t − e−B2t

]
H(t) (44)

where

C =
[
B1

B2 − B1

]
e

B2
B2−B1

log
(
B2
B1

)
(45)

and B2 > B1 > 0. By changing the values of parameters B1 and
B2 > 0, awide range of different time-modulating functions can be
obtained (see Fig. 2). Indeed, themodulating function of Shinozuka
and Sato has been used extensively in random vibration studies
regarding the computation of probability density distributions of
SDOF oscillators subjected to non-stationary excitation [25–27].
Using first Eq. (43) as a particular case of Eq. (29) and then Eq.
(44) as particular case of Eq. (30), Eq. (38) reduces to (i,m =
1, 2, . . . , 2n)

σSiΣm(t) =
C2S0
4π

2∑
q=1

2∑
s=1

4∑
k=1

(−1)k+s+qe−(Bq+Bs)t

×

{[
ej(ωms−ω

∗
iq)t + 1

]
J iq,ms,k1 − e−jω

∗
iqt J iq,ms,k2 − ejωmst J iq,ms,k3

}
(46)

where ωiq = ωi − jBq (q = 1, 2).

4.3. Linear elastic SDOF systems from at rest initial conditions

The first application example consists of a set of linear elastic
SDOF systems subjected to a Gaussian colored noise given by
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Fig. 3. Normalized displacement and velocity variances and correlation coefficient
for a SDOF system with natural period T = 1.0 s and damping ratio ξ = 0.10
subjected to colored white noise (η = 4π , ν = 2π ) with at rest initial conditions.

Eq. (43) and time-modulated by the unit-step function (i.e., from
at rest initial conditions). In this case, the complex modal matrix T
is given by

T =
[
1 1
λ1 λ2

]
(47)

in which

λ1,2 = −ξω0 ± jωd (48)

where ξ = viscous damping ratio,ω0 = natural circular frequency,
and ωd = ω0

√
1− ξ 2 = damped circular frequency of the

system. It is assumed that 0 < ξ < 1, which is usually
the case for structural systems. Fig. 3 shows the displacement
and velocity response variances (normalized by dividing them by
their stationary values) and the correlation coefficient between
displacement and velocity response of a linear SDOF system with
natural period T = 1.0 s and damping ratio ξ = 0.10. Closed-
form solutions for variances and correlation coefficients of several
SDOF systems with different natural periods and different viscous
damping ratios have been verified by Monte Carlo simulation.
For a SDOF , the non-geometric spectral characteristic c01,XY (t) =

σUẎ(t) can be easily expressed as

σUẎ(t) =
j
2ωd

σS1Σ1(t). (49)

Fig. 4 plots the non-geometric spectral characteristic c01,XY (t) for
a linear SDOF system with natural period T = 1.0 s and different
values of the viscous damping ratios (ξ = 0.01, 0.05 and 0.10). For
comparison purposes, Fig. 4 also shows theMonte Carlo simulation
estimates of c01,XY (t). As expected, lower stationary values are
reached in a shorter time as the viscous damping ratio increases. It
is noteworthy that simulation is very expensive computationally
(in this case, 5000 realizations have been used) and simulation
results cannot be employed to estimate the bandwidth parameters
and central frequencies because of error introduced by the scatter.
Fig. 5 displays the time-variant bandwidth parameter q(t) for

the displacement response processes of SDOF systemswith natural
period T = 1.0 s and varying damping ratio (ξ = 0.01, 0.05 and
0.10) subjected to colored noise with at rest initial conditions. All
time-variant bandwidth parameters are equal to one at time t =
0 s,which implies that displacement response processes are broad-
band at time t = 0 s. The displacement response processes become
narrow-band for large t . The bandwidth parameter stationary
values strongly depend on the damping ratio. The bandwidth
parameter time histories are very similar to the case of SDOF
subjected to white noise with at rest initial conditions [5] but with
Fig. 4. Comparison of closed-form solutions andMonte Carlo simulations (MCS) of
spectral characteristics c01,XY for SDOF systems with natural period T = 1.0 s and
varying damping ratio (ξ = 0.01, 0.05 and 0.10) subjected to colored white noise
(η = 4π , ν = 2π ) with at rest initial conditions.

Fig. 5. Time-variant bandwidth parameter q(t) for SDOF systems with natural
period T = 1.0 s and varying damping ratio (ξ = 0.01, 0.05 and 0.10) subjected to
colored white noise (η = 4π , ν = 2π ) with at rest initial conditions.

two major differences: (1) for colored excitation, the bandwidth
parameter time history depends on the natural period of the SDOF ,
while in the case of white noise excitation, it is possible to express
the bandwidth parameter time history as a function of the time
normalized by the SDOF natural period, and (2) q(t = 0 s) = 0.961
for the displacement response process of a linear SDOF system
subjected to white noise, while q(t = 0 s) = 1.000 for the
displacement response process of a linear SDOF system subjected
to colored noise (see Fig. 5). Fig. 6 shows the ratio of the central
frequency of the displacement response process over the natural
circular frequency, referred to as the normalized central frequency,
of SDOF systems with natural period T = 1.0 s and varying
damping ratio (ξ = 0.01, 0.05 and 0.10). It is observed that: (1)
The normalized central frequency has a very high value for small t ,
then as t increases it reaches aminimum and finally oscillates until
it reaches stationarity. Differently from SDOF systems subjected
to white noise excitation, these oscillations do not necessarily
remain below the value of the natural circular frequency. (2) The
normalized central frequency is a function of both damping ratio
and natural period T of the SDOF system. Differently from SDOF
systems subjected to white noise excitation, the stationary value
of the normalized central frequency is not independent of T .
It is noteworthy that Eq. (49) can be directly employed for com-

puting the corresponding first-order NGSCs of the response pro-
cesses of linearMDOF systems that are classically damped, by using
real-valued (second-order) mode superposition and thus avoiding
complexmodal analysis, which is computationallymore expensive
and less commonly used. As a consequence, the time-variant band-
width parameter and central frequency of classically damped lin-
earMDOF systems can also be computed very efficiently.
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Fig. 6. Time-variant central frequency ωc(t) for SDOF systems with natural period
T = 1.0 s and varying damping ratio (ξ = 0.01, 0.05 and 0.10) subjected to colored
white noise (η = 4π , ν = 2π ) with at rest initial conditions.

Fig. 7. Geometric configuration of benchmark three-storey one-bay shear-type
steel frame.

4.4. Three-storey shear-type building (linear MDOF system)

The three-storey one-bay steel shear-frame shown in Fig. 7 is
considered as an application example. This building structure has a
uniform storeyheightH = 3.20mand abaywidth L = 6.00m. The
steel columns are made of European HE340A wide flange beams
withmoment of inertia along the strong axis I = 27690.0 cm4. The
steel material is modeled as linear elastic with Young’s modulus
E = 200 GPa. The beams are considered rigid to enforce a typical
shear building behavior. Under this assumptions, the shear-frame
is modeled as a 3-DOF linear system.
The frame described above is assumed to be part of a building

structure with a distance between frames L′ = 6.00 m. The
tributary mass per storey, M , is obtained assuming a distributed
gravity load of q = 8 kN/m2, accounting for the structure’s own
weight, as well as for permanent and live loads, and is equal to
M = 28800 kg. The modal periods of the linear elastic undamped
shear-frame are T1 = 0.38 s, T2 = 0.13 s and T3 = 0.09 s,
with corresponding effective modal mass ratios of 91.41%, 7.49%
and 1.10%, respectively. Viscous damping in the form of Rayleigh
damping is assumed with a damping ratio ξ = 0.02 for the
first and third modes of vibration. The same shear-frame is also
consideredwith the addition of a viscous damper of coefficient c =
200 kN s/m across the first storey as shown in Fig. 7. The structure
with a viscous damper is a non-classically damped system.
Both classically and non-classically damped systems are

subjected to the same stochastic ground motion input. The
earthquake ground acceleration is modeled as a non-stationary
stochastic process described by the colored noise PSD given in
Eq. (43) time-modulated by the Shinozuka and Sato’s modulating
function (Eq. (45)). The parameters defining the colored noise are
Fig. 8. Time-variant time histories of the floor relative displacement variances for
both classically (without viscous damper: CD) and non-classically (with viscous
damper: NCD) damped structures.

Fig. 9. Time-variant time histories of the floor relative velocity variances for both
classically (without viscous damper: CD) and non-classically (with viscous damper:
NCD) damped structures.

assumed as ν = 2π rad/s, η = 4π rad/s and S0 = 10 m2/s3. The
parameters defining the modulating function are taken as B1 =
0.08π and B2 = 0.20π . The modulating function reaches its peak
value at time Tpeak = 2.43 s.
Figs. 8–11 show the time histories of (1) the variances of

the floor displacements relative to ground (in short, relative
displacements), (2) variances of the floor velocities relative to
ground (in short, relative velocities), (3) bandwidth parameters,
and (4) central frequencies (normalized by the first mode natural
frequency) of the floor relative displacement responses. All
quantities are provided for both the classically (i.e., without
damper) and non-classically damped case. All presented closed-
form solutions have been verified by Monte Carlo simulation.
Figs. 8 and 9 show that in the non-classically damped case,
compared to the classically damped case, (1) the peak values
of both relative displacement and velocity variances reduce
significantly, (2) the peak values of these variances are reached
earlier, and (3) the variance timehistories have a shape very similar
to the shape of the time-modulating function.
Figs. 10 and 11 show that the floor relative displacement

response processes are dominated, as expected, by the first mode
contribution and thus vary very little among first, second and
third floors. The normalized central frequency stationary values
are all very close to one. Figs. 10 and 11 also provide a zoom
view of the first 0.4 s of the time history of the bandwidth
parameters and central frequencies, respectively, of the three
floor’s relative displacements. These zoom views show that the
spectral properties of the displacement response processes for the
second and third floor of the considered system are very similar for
both the classically and non-classically damped structural model.
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Fig. 10. Time-variant bandwidth parameter of the floor relative displacement
processes for both classically (without viscous damper: CD) and non-classically
(with viscous damper: NCD) damped structures.

Fig. 11. Time-variant central frequency (normalized by the first mode natural
circular frequency) of the floor relative displacement processes for both classically
(without viscous damper: CD) and non-classically (with viscous damper: NCD)
damped structures.

Fig. 12. Integration paths and domains for integrals with exponentials.

Small but non-negligible differences between classically and non-
classically damped systems are observed in the spectral properties
(i.e., bandwidthparameter and central frequency) of the first storey
relative displacement response process.
This second application example illustrates the capability of the

presented extension of non-geometric spectral characteristics to
complex-valued stochastic processes to capture the time-variant
spectral properties in terms of the bandwidth parameter and
central frequency of the response of linear MDOF classically and
non-classically damped systems.
5. Conclusions

This paper presents new closed-form exact solutions for
the non-geometric spectral characteristics (NGSCs) of general
complex-valued non-stationary random processes. These newly
defined NGSCs are essential for computing the time-variant
bandwidth parameter and central frequency of non-stationary
response processes of linear systems. The bandwidth parameter
is also used in structural reliability applications, e.g., for obtaining
analytical approximations of the probability that a structural
response process out-crosses a specified limit-state threshold.
Closed-form exact solutions are derived and presented for the
time-variant bandwidth parameter and central frequency of non-
stationary response processes of linear SDOF and MDOF systems
subjected to time-modulated Gaussian colored noise excitations.
All the presented closed-form solutions are validated through
Monte Carlo simulation.
The obtained exact closed-form solutions have direct and im-

portant applications, since the response of many structures can be
approximated by using linear SDOF andMDOF models, and provide
valuable benchmark solutions for validating (at the linear struc-
tural response level) numerical methods developed to estimate
the probabilistic response of non-linear systems subjected to non-
stationary excitations. More general models for the time-variant
excitation are also the object of ongoing research by the authors.
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Appendix

The evaluation via Cauchy’s residual method of the integrals
appearing in Eq. (38) is here reported. Integration paths and
integration domains for the relevant integrals are shown in the
complex plane in Fig. 12.

J iq,ms,k1 =

∫
∞

−∞

sign(ω)
(ω − ω̃1)(ω − ω̃2)(ω − ω̃3)

dω

=

3∑
r=1

Biq,ms,kr

∫
∞

−∞

sign(ω)
(ω − ω̃r)

dω

=

3∑
r=1

Biq,ms,kr

[∫
∞

0

1
(ω − ω̃r)

dω +
∫
∞

0

1
(ω + ω̃r)

dω
]

=

3∑
r=1

Biq,ms,kr

{
lim
ω→∞

log
[
(ω − ω̃r)(ω + ω̃r)

]
− log(ω̃r)− log(−ω̃r)

}
= lim

ω→∞

log(ω2 − ω̃2r ) 3∑r=1 Biq,ms,kr


−

3∑
r=1

Biq,ms,kr

[
log(ω̃r)+ log(−ω̃r)

]
= −

3∑
r=1

Biq,ms,kr

[
log(ω̃r)+ log(−ω̃r)

]
(50)
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where the relations
∑3
r=1 B

iq,ms,k
r = 0, x0 = 1 (x real number) and

log 1 = 0 are used.

J iq,ms,k2 =

∫
∞

−∞

sign(ω)ejωt

(ω − ω̃1)(ω − ω̃2)(ω − ω̃3)
dω

=

3∑
r=1

Biq,ms,kr

∫
∞

−∞

sign(ω)ejωt

(ω − ω̃r)
dω

=
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r=1
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[∫
∞

0
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(ω − ω̃r)
dω −

∫ 0

−∞
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(ω − ω̃r)
dω
]
(51)

IC =
∮

ejzt

(z − ω̃r)
dz

=

∮
C1

ejzt

(z − ω̃r)
dz +

∮
C2

ejzt

(z − ω̃r)
dz +

∮
C3

ejzt

(z − ω̃r)
dz

= IC1 + IC2 + IC3 (52)

IC = 2jπResω̃r∈D1 [e
jzt , ω̃r ]

= 2jπejω̃r t I(ω̃r)R(ω̃r) (53)

where

R(ω) = max
[

R(ω)

|R(ω)|
, 0
]

(54)

IC1 =
∫
∞

0

ejωt

(ω − ω̃r)
dω (55)
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R→∞

∫ π
2

0

ejRe
jθ t

(Rejθ − ω̃r)
Rjejθdθ

= j lim
R→∞

∫ π
2

0
ejRt cos θe−Rt sin θdθ = 0 (56)

IC3 = j
∫ 0

∞

e−xt

jx− ω̃r
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∫
∞

0
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x+ jω̃r
dx
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∫
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∫
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u
du = −ejω̃r tE1(jω̃r t) (57)

IC1 = IC − IC2 − IC3
= ejω̃r t

[
2jπ I(ω̃r)R(ω̃r)+ E1(jω̃r t)

]
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ID =
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dz
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ID = −2jπResω̃r∈D2 [e
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= −2jπejω̃r t I(ω̃r)R(−ω̃r) (60)
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]
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J iq,ms,k3 =
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