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a b s t r a c t

In the design of continuous steel–concrete composite girders, cross section plastic resistance can be
exploited in the sagging regions, where the compressed flange of the steel beam is connected to the
reinforced concrete slab. However, elastic verification of cross sections is normally adopted in the hogging
regions, where the compressed portion of the steel beam is unrestrained by the concrete slab and more
prone to buckling. In a combined design approach, which uses the cross section plastic resistance in the
sagging regions and the cross section elastic resistance in the hogging regions, the design must satisfy
the condition that the sagging plastic moment can develop while the hogging bending moment remains
below the elastic limit. The objectives of this work are to present a framework for simplified probabilistic
nonlinear analysis of steel–concrete composite bridges and to assess, through such framework, the
combined elastic–plastic design as applied to a realistic three-span continuous steel–concrete composite
road bridge. The methodology presented here is based on the First-Order Second-Moment (FOSM)
approximation, adopted to compute the first- and second-order statistical moments (means, variances
and covariances) of structural response quantities. Deterministic and probabilistic numerical results for
the benchmark problem are illustrated and discussed.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Continuous steel–concrete composite (SCC) girders are used
extensively for the construction of short andmedium span bridges,
due to the benefits derived from the combination of structural
steel and reinforced concrete, as well as from span continuity [1,2].
Solutions of high structural and aesthetic value can be obtained,
provided that the necessary attention is given to design and
construction phases [3]. The structural behavior of SCC beams
for buildings and bridges is influenced by a considerable number
of parameters describing sagging and hogging sections, layout of
spans, and load patterns. In the past, various authors dealt with
design aspects (e.g., [4–12]), recognizing some issues in the flexural
design of continuous composite systems.
In the sagging regions, where the compressed flange of the

steel beam is connected to the reinforced concrete slab, the cross
sections generally belong to class 1 or class 2 (compact sections),
according to the Eurocodes [13,14]. Therefore, design bending
resistance can be determined by rigid-plastic theory [13,14].
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Thus, a considerable reduction of the steel weight can be obtained
compared to a design based on the elastic bending resistance.
In the hogging regions, where the compressed portion of the
steel beam is unrestrained by the concrete slab and more prone
to buckling, the cross sections commonly belong to class 3
or class 4 (slender sections) and have insufficient ductility for
plastic design. Thus, elastic analysis is adopted for calculating the
design bending resistance in the hogging regions [13,14]. This
design approach, which uses the cross section plastic resistance
in the sagging regions and the cross section elastic resistance
in the hogging regions, is referred to as combined design. The
combined design must satisfy the condition that the sagging
plastic bending moment can develop while the hogging bending
moment remains below the elastic limit. In order to verify that this
condition is satisfied, nonlinear analysis can be used. Since multi-
span continuous girders with variable cross section geometry
are common in real-world designs and many loadings conditions
must be considered, an efficient numerical procedure for nonlinear
analysis is necessary. Such procedure should also include the
deformability and nonlinear behavior of shear connectors between
reinforced concrete slab and steel beam, as explicitly requested by
Eurocode 4 Part 1 [13] and Part 2 [14].
Nevertheless, uncertainties in material properties, geometry,

and several other modelling parameters that are stochastic
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quantities in nature influence the response analysis results.
Unfavorable combinations of such random parameters might
endanger the actual fulfilment of the hypothesis at the base of the
combined design approach (i.e., hogging regions below the elastic
limit and sufficient ductility in the sagging regions). Therefore,
in addition to an accurate deterministic model, a methodology is
needed to propagate uncertainties from the parameters defining
the model of the structure to the structural response quantities of
interest.
In this work, comparisons are made between the design

criterion for continuous SCC bridge girders based entirely on
elastic resistance of cross sections (elastic design), and the design
criterion based on plastic resistance of sagging cross sections and
elastic resistance of hogging cross sections (combined design). In
particular, this paper considers the elastic and combined designs
of a realistic three-span continuous SCC road bridge. The designs
of this bridge were obtained according to the Eurocodes. Finite
element (FE) probabilistic nonlinear response analysis, based on
the First-Order Second-Moment (FOSM) approximation [15], is
used to evaluate behavioral aspects and safety levels of these
two designs. Deterministic and probabilistic results are illustrated
and discussed. Although applied here to a specific problem, the
probabilistic response analysis methodology presented in this
paper is general and can be applied to design of SCC bridges based
also on design codes other than the Eurocodes.

2. Nonlinear probabilistic analysis of SCC girders

2.1. Introductory remarks

Probabilistic response analysis consists of computing the prob-
abilistic characterization of the response of a specific structure.
This analysis requires the probabilistic characterization of mate-
rial, geometric, and loading parameters as input. Several meth-
ods are available for probabilistic response analysis [15]. Among
these methods, Monte Carlo Simulation (MCS) [16] is perhaps the
most widely used. The MCS procedure requires: (1) generation
of N realizations of the n-dimensional random parameter vector
2 according to a given n-dimensional joint Probability Density
Function (PDF); (2) computation by FE response analysis of N re-
sponse curves for each component of them-dimensional response
vectorR, corresponding to theN realizations of the randomparam-
eter vector 2; (3) statistical estimation of specified marginal and
joint moments of the components of R at each load step. MCS is a
general and robust methodology, but suffers from the two follow-
ing significant limitations. First,MCS requires complete knowledge
of the joint PDF of the random parameters2, for which, in general,
only partial information is available. Second, MCS requires per-
forming N FE response analyses. This number N can be very large
for accurate estimates of marginal and joint moments of response
quantities R, and increases rapidly with the order of the statisti-
cal moments. For realistic bridge structures, complex nonlinear FE
analyses are necessary for accurate prediction of the structural re-
sponse, and repeating such analyses a large number of times could
be computationally prohibitive.

2.2. FOSM approximation for probabilistic response analysis

An approximatemethod of probabilistic response analysis is the
FOSM method [15], in which mean values (first-order statistical
moments), variances and covariances (second-order statistical
moments) of the response quantities are estimated from the first-
order Taylor series expansion of the response vector R. Given the
vector of n random parameters2, the corresponding mean values
vector µ2 and covariance matrix 62 are[
µ2

]
i = µi (i = 1, 2, . . . , n) (1)

[62]ij = ρijσiσj (i, j = 1, 2, . . . , n) (2)

where µi and σi denote respectively the mean value and the
standard deviation of random parameter Θi, while ρij is the
correlation coefficient of random parameters Θi and Θj (ρii = 1;
i = 1, 2, . . . , n). The linearization of the response vector R by
means of the first-order truncation of its Taylor series expansion
in the random parameters2 about a given point θ0, gives:

R (2) ≈ Rlin (2) = r (θ0)+∇θr|θ=θ0 (2− θ0) (3)

in which[
∇θr|θ=θ0

]
ij =

∂ri
∂θj

(i = 1, 2, . . . ,m, and j = 1, 2, . . . , n) (4)

is the sensitivity of response quantity ri to parameter θj evaluated
at θ = θ0 [17], and lower case letters θ and r denote specific
realizations of the corresponding randomquantities indicatedwith
the upper case letters 2 and R. Using the Mean-Centered FOSM
method, the vector R is approximated by a first-order truncation
of its Taylor series expansion in the random parameters 2 about
their mean values µ2 as

R (2) ≈ Rlin (2) = r
(
µ2

)
+∇θr|θ=µ0

(
2− µ2

)
. (5)

The first- and second-order statistical moments of the response
quantities R are approximated by the corresponding moments of
the linearized response quantities, i.e.,

µR ≈ µRlin = E [Rlin (2)]
= r

(
µ2

)
+∇θr|θ=µ2

E
[
2− µ2

]
= r

(
µ2

)
(6)

6R ≈ 6Rlin = E
[(

Rlin (2)− µRlin

) (
Rlin (2)− µRlin

)T]
= ∇θr|θ=µ2

62

(
∇θr|θ=µ2

)T (7)

in which E[· · ·] denotes the mathematical expectation opera-
tor [18].
The explicit forms of variances and covariances of the response

quantities considered are derived from Eq. (7) as follows:

σ 2Rk ≈

n∑
i=1

(
∂rk
∂θi

∣∣∣∣
θ=µ2

σi

)2
+ 2

n∑
i=1

i−1∑
j=1

ρij
∂rk
∂θi

∣∣∣∣
θ=µ2

∂rk
∂θj

∣∣∣∣
θ=µ2

σiσj (k = 1, . . . ,m)

(8)

cov [Rk, Rs] ≈
n∑
i=1

n∑
j=1

ρij
∂rk
∂θi

∣∣∣∣
θ=µ2

∂rs
∂θj

∣∣∣∣
θ=µ2

σiσj

(k, s = 1, . . . ,m) (9)

respectively, being Rk and Rs the k-th and s-th components of R.
Eqs. (6) and (7) provide information on the variability of the re-

sponse due to the uncertainty of the modelling parameters and on
the statistical correlation between the different response quanti-
ties. These approximate first- and second-order response statis-
tics can be readily obtained when response sensitivities evaluated
at the mean values of the random parameters are available. Such
response sensitivities can be computed by the very efficient and
accurate Direct Differentiation Method (DDM) [17,19–21]. FOSM-
based probabilistic response analysis, in conjunctionwith DDM for
response sensitivity calculations, has a low additional computa-
tional cost as compared to a deterministic-only nonlinear response
analysis. The FOSMmethod requires statistical information on the
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uncertain parameters that are usually available (i.e., the first- and
second-order statistical moments in Eqs. (1) and (2)). In addition,
the FOSM approximation was found sufficiently accurate in esti-
matingmean and standard deviation of response quantities of ran-
dom structural systems under quasi-static loads, when structural
response nonlinearities are in the low-to-moderate range [22,23].
For the above reasons, the DDM-based FOSM method can conve-
niently be applied as an efficient and practical method for prob-
abilistic analysis of bridge structures as opposed to MCS or other
more advanced methods. In fact, these methods require larger
computational efforts and higher-order statistical information,
which is only rarely available.

2.3. Response and response sensitivity analysis of SCC beams

A simple and effective two-dimensional 10 nodal degrees-of-
freedom (DOF) displacement-based composite beam finite ele-
ment with deformable shear connection (partial interaction) [24]
is used in this study. Its formulation is based on the following as-
sumptions: (i) the Euler–Bernoulli beam theory (in small defor-
mations) applies to both components of the composite beam, and
(ii) the deformable shear connection is represented by an inter-
face model with distributed bond allowing interlayer slip and en-
forcing contact between the steel and concrete components. Such
FE model includes reinforced concrete and steel nonlinear behav-
ior, as well as the deformability and nonlinear behavior of shear
connectors between reinforced concrete slab and steel beam, as
explicitly requested by Eurocode 4 Part 1 [13] and Part 2 [14].
This 10DOF finite element was proven to produce accurate re-
sults for the nonlinear analysis of SCC beams [25] and SCC beams
with external prestressing [26], as well as for SCC frames under
cyclic loads [27]. Material nonlinearity-only is considered since
geometric nonlinearities do not have any practical effect in real-
istic non-prestressed steel–concrete continuous girders [28]. The
10DOF composite beam element was augmented with response
sensitivity calculations by means of the DDM [29,30]. In the DDM,
the consistent response sensitivities are computed at each analysis
step after convergence of the response computation. This requires
an exact differentiation of the FE algorithm for response calculation
(including the numerical integration scheme for the material con-
stitutive law) with respect to each sensitivity parameter θ . Conse-
quently, the response sensitivity calculation algorithm affects the
various hierarchical layers of FE response simulation, namely: (1)
structure level, (2) element level, (3) section (integration point)
level and (4) material level. A detailed description of the DDM pro-
cedure as applied to displacement-based FEs for composite beams
with deformable shear connection can be found in [29], where spe-
cific issues for elementswith internal nodes are also illustrated. Re-
sults of the DDM derivation and computer implementation for SCC
beams were validated [29–31] using the Forward Finite Difference
(FFD)method (i.e., estimating the derivative of the response by im-
posing a perturbation of the sensitivity parameter θ and using a
first-order finite difference approximation [17]). In addition, prob-
abilistic nonlinear response results for SCC beamswith deformable
shear connection obtained by DDM-based FOSM analysis were val-
idated [32] by comparisons with MCS.

2.4. Material models for response and response sensitivity analysis of
SCC beams

Material constitutive models for response and response sensi-
tivity analysis are required to compute the stress resulting from
a given strain history, as well as the derivative of the stress with
respect to the material parameters assumed as uncertain in the
probabilistic analysis. The constitutive material models adopted in
this study are hereafter briefly illustrated, together with the un-
certain modelling parameters and the relevant response sensitiv-
ity computations. Cyclic constitutive models are used for steel and
concrete materials and for the shear connection. Thus, the frame-
work presented here can be employed without modification for
both monotonic/cyclic static loading and dynamic loading.
The constitutive law used for the steel of the beam and for

the reinforcing steel in the concrete slab is the uniaxial Mene-
gotto–Pinto constitutive model [33], a nonlinear law capable of
modelling both kinematic and isotropic hardening [34], as well as
the Bauschinger effect. A typical cyclic response of the steel ma-
terial model is shown in Fig. 1(a). The constitutive parameters as-
sumed as randomparameters (i.e., the components of the vector2
related to the steel materials) are the modulus of elasticity, E, the
yield stress, fy, and the post-yield to initial tangent stiffness ratio b.
Details on the model, its numerical implementation, and response
sensitivity computation can be found in [35].
The selected constitutive law for the concrete material in

compression is a uniaxial cyclic law with monotonic envelope
given by the Popovics–Saenz law [36]. The constitutive parameters
modelled as random variables are the compressive strength, fc ,
the initial tangent stiffness, Ec , the strain at compressive strength,
εp, the softening stress at the inflection point, f0, and the strain
corresponding to the softening stress, ε0 (Fig. 1(b)). In order
to satisfy Eurocode prescriptions, as illustrated in the following
paragraph, null strength is assumed for the concrete in traction.
The details of the formulation of this constitutive law and related
response sensitivity computation can be found in [31].
The behavior of the shear connectors is described by a force–slip

(fs-slip) cyclic model with monotonic envelope given by the Oll-
gaard et al. law [37]. The cyclic response of the shear connectors is
based on a simplified phenomenological description of experimen-
tal tests. A typical cyclic response of the shear connection model is
shown in Fig. 1(c). The constitutive parameter modelled as a ran-
dom variable is the shear strength, fsmax. The details of this con-
stitutive law and related response sensitivity computations can be
found in [31].
In order to compute the FOSM approximations of the mean

response vector (Eq. (6)) and response covariance matrix (Eq. (7)),
mean values, standard deviations, and correlation coefficients are
needed for all material parameters modelled as random variables.

2.5. Nonlinear analysis and safety format in the Eurocodes

Eurocode 4 Part 2 [14] (Paragraph 5.4.3 on nonlinear global
analysis for bridges) allows nonlinear analysis and specifically
requires that the behavior of the shear connection shall be taken
into account. More information is found in Eurocode 4 Part
1 [13] (Paragraph 5.4.3 on nonlinear global analysis), which allows
nonlinear analysis in accordance with Paragraph 5.7 of Eurocode 2
Part 1-1 [38] and Paragraph 5.4.3 of Eurocode 3 Part 1 [39].
In paragraph 5.7 of Eurocode 2 Part 1-1, nonlinear analysis is

allowed for both ultimate limit states and service limit states, and
various basic indications are given. Eurocode 3 Part 1 (paragraph
5.4.3 on plastic global analysis) requires that plastic global analysis
should only be used where the stability of members at plastic
hinges can be assured. Indications on steelmodels for plastic global
analysis are also given, allowing the use of several differentmodels.
These models range from simplified plastic models (e.g., bi-
linear stress–strainwith hardening), tomore realistic stress–strain
relationships (e.g., true stress–strain curves derived from test
results).
In addition, paragraph 5.7 of Eurocode 2 Part 2 [40] allows non-

linear analysis, provided that themodel can appropriately cover all
failure modes and that the concrete tensile strength is not utilized
as a primary load resisting mechanism. The same paragraph 5.7 of
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Fig. 1. Typical cyclic responses for material constitutive models: (a) stress–strain
for structural steel and reinforcements; (b) stress–strain for concrete; (c) force–slip
for shear connection.

Eurocode 2 Part 2 recommends suitable stress–strain relationships
for concrete and reinforcement steel, as well as a safety format that
is illustrated hereafter.
This safety format for nonlinear analysis is subdivided into the

following steps:
Step 1: The resistance should be evaluated for different levels

of appropriate actions, which should be increased from their
serviceability values by incremental steps, so that the value of
γGGk and γQQk are reached in the same step. Here, Gk and Qk
denote the characteristic values of permanent and variable actions,
respectively; γG and γQ are the partial factors for permanent and
variable actions, respectively. In bridge structures,γG = γQ = 1.35
in locations where loads are unfavorable, γG = 1.00 and γQ = 0
where loads are favorable [41].
Step 2: The incremental loading process should be continued

until one region of the structure attains the ultimate strength, or
there is global failure of the structure. The corresponding load is
referred to as qud.
Step 3: An overall safety factor γO should be applied to obtain

the corresponding resistance R(qud/γO) under load qud/γO.
Step 4: The following inequality should be satisfied:

E
(
γGGk + γQQk

)
≤ R

(
qud
γRdγO

)
(10)

where E(X) is the effect of action X , γO = 1.20 is the overall safety
factor, and γRd = 1.06 is the partial factor for model uncertainty
for resistance (uncertainty in the resistance model plus geometric
deviations if not modelled explicitly, as clarified in Annex C of
Eurocode 0 [41]).

3. Probabilistic analysis of a three-span continuous SCC girder

3.1. Elastic design and combined design of the SCC girder

A realistic three-span continuous SCC road bridge is considered
as the benchmark problem in this work (Fig. 2). Two bridge
design solutions, obtained according to the Eurocodes, are studied:
the first solution is based on cross section elastic resistance
(elastic design), while the second one is based on cross section
plastic resistance in the sagging regions and cross section elastic
resistance in the hogging regions (combined design). As already
noted, in the sagging regions the cross sections generally belong to
class 1 or class 2 (compact sections) and design bending resistance
can be determined by rigid-plastic theory [13,14]. However, in the
hogging regions the cross sections commonly belong to class 3 or
class 4 (slender sections) and have insufficient ductility for plastic
design. Thus, in the hogging regions, elastic analysis is adopted for
calculating the design bending resistance [13,14].
The bridge cross section is made of twin I-beams of steel

S355 connected to a reinforced concrete slab of concrete fck
30MPa (characteristic compressive strength) with reinforcements
fyk 430 MPa (characteristic yield stress). The steel beams are
connected to each other with a transverse IPE 700 beam every
8.00 m. The actions considered for the design are permanent
loads [42], wind loads [43], temperature changes [44], concrete
shrinkage [14], and road traffic loads due to Load Model 1 [45].
A preliminary continuous beam model was studied using linear
analysis according to Eurocode 4 Part 2 [14]. The envelopes
of bending moment and shear force along the bridge axis
were obtained from the combination of the applied actions
with their relevant load amplification factors [41]. From such
envelopes, both the elastic and the combined design were derived.
Specifically, in the elastic design, the steel beam cross sections
were dimensioned to grant the least required elastic resistance
under the sagging bending moments and under the hogging
bending moments. Afterward, the continuous beam model was
updated and reanalyzed, and the updated bending moment
and shear force envelopes were used for the structural elastic
verifications according to Eurocode 4 Part 2 [14]. In particular,
the design considered ultimate limit state and service limit state
elastic verifications under short-term and long-term conditions
of the normal and shear stress in the steel beam, as well as
of the normal stress in the concrete slab and reinforcements.
Verifications of the stages of construction [14] and limitation of
web breathing [46] were also included. The same framework was
adopted for the combined design, with the difference that the
steel beam cross sections in the sagging regions were dimensioned
to grant the least required plastic resistance under the sagging
bending moments. Accordingly, the structural verifications of the
sagging cross sections in the combined design were based on the
plastic limit state, according to Eurocode 4 Part 2 [14].
The elastic design and the combined design differ in flange and

web thickness, as reported in Fig. 3. The upper and lower flange
widths were kept constant in both design with values of 700 mm
and 1000 mm, respectively. For both designs, the resulting cross
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Fig. 2. Three-span continuous SCC girder used as benchmark problem: (a) longitudinal profile; (b) cross section (dimensions in cm except as otherwise specified).
Fig. 3. Flanges and web thickness in the elastic design (ED) and in the combined
design (CD) for half bridge (dimensions in mm except as otherwise specified).

Table 1
Material constitutive parameters modelled as uncertain and corresponding mean
values and coefficients of variation (COV).

Material Parameter Mean COV

Steel fy (t ≤ 40 mm) 355 MPa 0.106
fy (t > 40 mm) 325 MPa 0.106
E0 200000 MPa 0.033
b 0.01 0.15

Concrete fc 25.29 MPa 0.20
Ec 32000 MPa 0.20
εp 0.002 0.20
f0 15 MPa 0.20
ε0 0.004 0.20

Reinforcements fy 473 MPa 0.106
E0 200000 MPa 0.033
b 0.01 0.15

Shear connection fsmax (segments S1) 5843 kN/m 0.20
fsmax (segments S2) 4681 kN/m 0.20
fsmax (segments S3) 3520 kN/m 0.20

sections are class 1 in the sagging regions and class 3 in the hogging
regions. In the combined design, the weight of the twin I-beams’
steel is 21.81% lower than it is in the elastic design. The reduction
in the total weight of the composite girder is less significant (i.e.,
3.95%) because the same reinforced concrete slab is used. In fact,
the slab geometry depends on the transverse behavior, which is
the same in the two designs.
Full shear connection between reinforced concrete slab and

steel girder is provided by ductile shear connectors (i.e., with
characteristic slip capacity of at least 6 mm [13,14]) with designed
shear strength per unit length, fsmax, given in Table 1. Segments
S1 correspond to the hogging regions from 46 to 70 m and 130 to
154 m, segments S2 are the sagging regions from 21 to 46 m and
154 to 179 m, and segments S3 are the sagging regions from 0 to
21 m, 70 to 130 m, and 179 to 200 m. Partial shear connection was
not considered, as it is not allowed in bridge design [13,14].

3.2. Model and analysis assumptions

The effectivewidth of the reinforced concrete slabwas assumed
as constant and equal to its full width. Since the traffic loads have
a non-symmetric transverse configuration, only the more loaded
side of the cross section (i.e., one steel I-beam connected to half
width of the reinforced concrete slab) was analyzed as a planar
composite beam. The composite beam axis was discretized into
38 FEs, i.e., 11 FEs for the lateral spans and 16 FEs for the central
span, with an appropriate subdivision in order to accommodate
variations in the cross section and shear connection strength.
The finite elements used were the 10DOF beam elements with
deformable shear connection [24] described in Section 2.3. The
composite beamcross sectionsweremodelledusing a fiber-section
discretization [24,29,30]. Vertical deflection was restrained at the
four supports, while the horizontal displacement of the steel beam
was restrained at the first support only. The characteristic values of
the permanent loads, acting along the composite beam as vertical
distributed loads, are: (1) the steel beam self weight, derived from
its cross section area assuming 78.50 kN/m3 as steel characteristic
weight per unit volume; (2) the half slab uniform self weight equal
to 50.20 kN/m; and (3) the superimposed permanent loads (road
pavement and parapets) equal to 22.13 kN/m. The traffic loads
acting along the composite beam were modelled as a uniform
vertical load equal to 32.00 kN/m and two vertical forces equal to
385.00 kN travelling at a constant distance of 2.00 m from each
other.
Nonlinear FE response analyses were performed by increment-

ing simultaneously dead and road traffic loads, according to the
Eurocode load sequence previously described in Section 2.5. The
load control incremental procedure was used together with the
Newton–Raphson iterative method. The criterion adopted for ter-
minating the nonlinear FE analyses was the attainment of the ul-
timate strain along any of the material fibers or of the ultimate
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Table 2
Correlation coefficients for concrete material parameters.

Parameter fc Ec εp f0 ε0

fc 1.0 0.2 0.0 0.8 0.0
Ec 0.2 1.0 0.2 0.0 0.0
εp 0.0 0.2 1.0 0.0 0.8
f0 0.8 0.0 0.0 1.0 0.0
ε0 0.0 0.0 0.8 0.0 1.0

slip along the shear connection. In the load cases considered in this
study, the FE analyses were always terminated due to the attain-
ment of the ultimate strain of the steel (i.e., εsu = 0.01). The shear
connection slip remained always under 6 mm, while no limits
were assumed for the concrete strain, since the concrete consti-
tutive model is characterized by a softening branch after peak
strengthwith stress decaying to zero. Since the cross sections at the
hogging regions (class 3) cannot develop plastic deformations, the
results obtained from the FE analyses were limited afterward, as
described in the discussion of the numerical results. DDM-based
response sensitivity analysis was performed simultaneously to the
FE response analysis. FE response sensitivities were computed at
the end of each load step increment, after convergence of the re-
sponse was achieved. Data from response and response sensitivity
analyses were subsequently post-processed using Eq. (7) to obtain
variances and covariances of the response quantities.
The mean values and coefficients of variation (COVs; i.e., ratio

between the standard deviation and the mean value) of the
material parameters modelled in this study as random variables
are given in Table 1, where t denotes the nominal thickness
of the steel element. The mean value of the yield stress of the
girder steel was assumed equal to its nominal value [39,46]. The
mean value of the yield stress of reinforcements was taken as
1.1fyk, as indicated in paragraph 5.7 of Eurocode 2 Part 2 [40].
The mean value of the concrete compressive peak strength was
computed as suggested in paragraph 5.7 of Eurocode 2 Part
2 [40]; i.e., γcf fck with γcf = 1.1γS/γC = 0.843, where
γS = 1.15 and γC = 1.5 are the partial safety factors for
reinforcement steel and concrete, respectively. The mean value of
the shear connection strength was assumed to coincide with the
nominal design value, as different indications are not given in the
Eurocodes. The COVs were obtained from studies available in the
literature for steel [47,48] and concrete [49], while the COV of the
shear connection strength was taken equal to that of the concrete
strength. This assumption was based on the hypothesis that the
shear connection failure due to concrete crushing is the foremost
source of uncertainty, and is consistentwith results available in the
literature [50]. The correlation coefficients of the steel parameters
were assumed to be zero, according to available studies [48].
The correlation coefficients adopted for the concrete parameters
are given in Table 2. These values were based on engineering
judgment, to avoid unrealistic combinations of parameters that
might lead to inconsistencies in the definition of the relevant
concrete constitutive law. The correlation coefficients between
concrete and steel constitutive parameters were considered to
be zero, since the properties of the two different materials are
statistically independent. The connection strength was assumed
to be uncorrelated to other material parameters, since no reliable
information is available. It is worth observing that the values of
the correlation coefficients between different material parameters
have a smaller influence on the results of the probabilistic response
analysis [32] than the means and standard deviations of these
material parameters. Thus, the assumptions made on the values
of these coefficients have a small effect on the numerical solution
presented hereafter.
All uncertain material parameters were modelled as random

fields spatially fully correlated; i.e., each material parameter was
Fig. 4. Load multiplier versus mid-span deflection of the central span.

modelled as a single random variable over the entire length of
the SCC girder. More advanced modelling, including discretization
of each random field into several random variables correlated
through a more accurate spatial correlation function, was not
pursued in this work because: (1) the information available was
not sufficient to describe the actual spatial correlation between
the random variables at different locations in the bridge, and (2)
other studies [32] suggest that the effect of spatial correlation is
relatively small compared to the effects of other assumptions (e.g.,
correlation coefficients between random variables and marginal
distribution types), even if not negligible.

3.3. Numerical results

Selected results are shown for the load case which produces
the maximum (negative) bending moment at the left intermediate
support (see load pattern depicted in the inset of Fig. 4). Other load
cases were considered and found less critical for the two bridge
designs, and thus they are not reported in this paper for the sake
of brevity.
Load–deflection curves for the two designs are shown in Fig. 4,

where the applied load is represented in non-dimensional units by
reporting the load multiplier (e.g., for the load multiplier equal to
one, the applied loads are at the ultimate limit state design load
level). The solid lines represent the mean deflection of the central
span (computed via Eq. (6)), and the dashed curves represent
the mean deflection plus/minus its standard deviation (computed
via Eq. (7)). The dashed curves give a simple graphical indication
of the dispersion of the results at the various load levels. As
expected, the effect of uncertainties in the global response is
limited for low load levels, and becomes much more pronounced
when the structure undergoes significant plastic deformations. In
fact, response sensitivities generally assume larger values as the
SCC structure behavior becomes more nonlinear [29,30]. Both the
elastic design (ED) and the combined design (CD) reach the design
loads with an almost linear global behavior. Under design loads,
the deflection COVs are 3.7% for the ED and 3.9% for the CD.
The sagging region of the central span deforms well beyond

yielding, as shown by the moment–curvature curves in Fig. 5
and by the load–non-dimensional bending moment curves in
Fig. 6. The non-dimensional bending moment is defined as the
ratio between the bending moment M and the positive plastic
moment Mpl,m of the composite section, computed using rigid-
plastic analysis based on themean values of thematerial strengths,
Mpl,m = 136 834 kN m (ED) and Mpl,m = 91 548 kN m
(CD). Once again, the solid lines represent the mean response
and the dashed curves represent the mean response plus/minus
its standard deviation. The effect of uncertainties is small when
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loads lower that the design load are considered (Fig. 6). For
example, the bending moment COV is 0.98% (ED and CD) at the
design load level. Plastic deformations are also attained at the
left intermediate support, as seen in Fig. 7, in which the relevant
moment–curvature curves (absolute values) are plotted. In this
last case the moment–curvature relations for the two designs
are almost coincident until the curve for the combined design
ends at curvature 1.17 × 10−6 mm−1. It is worth noting that
the moment–curvature curves shown here are those derived from
the nonlinear analysis of the whole bridge structure. Thus, they
also include the effect of nonlinear partial interaction due to the
actual evolution of slip gradients at the interface between slab
and steel beam. These moment–curvature curves are considerably
different from the curves obtained through a nonlinear analysis of
the composite cross section based on the assumption of complete
interaction, as observed in [51]. In addition, themoment–curvature
curves considered here terminate when the nonlinear analysis
ends due to global collapse, a condition that might occur before
the ultimate curvature of the cross section is attained. It is
also important to observe that the high-curvature region of the
hogging moment–curvature curves in Fig. 7 were obtained from a
finite element beam model that does not include local buckling.
However, at the intermediate support, there is no sufficient
ductility to develop plastic deformations, since the cross section
belongs to class 3 in both bridge designs. Therefore, the ultimate
limit state to be assumed in the nonlinear analysis presented
here is the attainment of the elastic limit bending moment Mlim,el
(i.e., bending moment at yielding) in the hogging region. The
presented probabilistic analysis gives the mean value Mlim,el,m of
Mlim,el and the mean value plus/minus its standard deviation. Such
values are represented by the horizontal lines in Fig. 7, while the
vertical line indicates the curvature at Mlim,el,m. For both bridge
designs, Mlim,el,m = 169 294 kN m (absolute value) and its COV is
3.1% (i.e., the differences between ED and CD are negligible). The
value of Mlim,el,m and Mlim,el,m plus/minus its standard deviation
are depicted in Fig. 8 as the load–non-dimensional moment
curves for the cross section at the intermediate support. The non-
dimensional bending moment is defined here as the ratio between
the bending moment M and Mlim,el,m. The intersection between
the mean value of the demand (i.e., the computed mean bending
moment at the intermediate support) and the mean value of the
capacity (i.e., the mean elastic limit bending moment) is marked
with a circle and identifies the load level corresponding to the
attainment of the assumed ultimate limit state for a class 3 cross
section. Such limit state load levels are indicated by ‘‘ED ULS
m’’ (design load amplification = 1.925) and ‘‘CD ULS m’’ (design
load amplification= 1.679), for the elastic and combined designs,
respectively. The dashed curves and lines, again representing the
relevant mean values plus/minus their standard deviation, give a
simple indication of the dispersion of results.
A more conservative evaluation of the load level at the

ultimate limit state can be computed by using the fractile 0.05
for the capacity and the fractile 0.95 for the demand. Assuming a
lognormal distribution for the capacity, the fractile 0.05 of Mlim,el
is computed from its mean value and standard deviation [18],
obtaining Mlim,el,005 = 160 935 kN m. Similarly, the fractile
0.95 of the bending moment, computed from the assumption of
lognormal distribution for the demand, is depicted for both designs
as a function of the load level in Fig. 9 (dashed curves), together
with the mean response (solid curves). The intersection between
Mlim,el,005 and the fractile 0.95 of the demand identifies the load
level that corresponds to the attainment of the ultimate limit
state when the characteristic values are considered instead of the
mean values. Such limit state load levels are indicated by ‘‘ED ULS
k’’ (design load amplification = 1.765) and ‘‘CD ULS k’’ (design
load amplification = 1.520) for the elastic and combined designs,
Fig. 5. Cross section at the central mid-span: Bending moment versus curvature.

Fig. 6. Cross section at the central mid-span: Load multiplier versus non-
dimensional bending moment.

Fig. 7. Cross section at the left internal support: Bendingmoment versus curvature.

respectively, and are compared in Fig. 10 to the previously obtained
limit state load levels. In both bridge designs, it is observed that
the ultimate limit states are reached for load levels that are
significantly higher than the design loads.
Characteristic values for the demand and the capacity are ob-

tained under the assumption of lognormal distribution for the cor-
responding quantities. Such assumption is an approximation that
becomes less accurate for higher nonlinearity [23]. Nevertheless,
the ultimate state conditions are reached in correspondence with
limited structural nonlinearity and response dispersion (as mea-
sured by the standard deviation). Thus the lognormal distribution
can be considered an adequate approximation.
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Fig. 8. Cross section at the left internal support: Load multiplier versus non-
dimensional bending moment with marked limit states based on mean values.

Fig. 9. Cross section at the left internal support: Load multiplier versus non-
dimensional bending moment with marked limit states based on mean and
characteristic values.

Fig. 10. Load multiplier versus mid-span deflection of the central span with
marked limit states.

3.4. Verification according to the Eurocode safety format

The results of the deterministic and probabilistic analyses are
used for the verification of the two bridge designs according to the
Eurocode safety format. Eq. (10) is used in the form:

MEd
(
γGGk + γQQk

)
≤ MRd

(
qud
γRdγO

)
(11)

inwhichMEd denotes the bendingmoment (demand) as computed
from nonlinear analysis under the design load (DL), MRd is the
resisting bending moment (capacity) as computed from nonlinear
analysis under load qud/(γRdγO), and qud is the applied load
when the girder reaches the ultimate limit state (i.e., limit states
‘‘ED ULS m’’, ‘‘ED ULS k’’, ‘‘CD ULS m’’, and ‘‘CD ULS k’’). In
Eq. (11), γO = 1.20, and γRd = 1.06 for resistance model
uncertainty when the mean values of capacity and demand from
nonlinear analysis are considered, or γRd = 1.00 for resistance
model uncertainty when the characteristic values of capacity
(fractile 0.05) and demand (fractile 0.95) from nonlinear analysis
are considered. Results for the verification described above are
reported in Table 3. All verifications are satisfiedwith a 44%margin
for the elastic design and 21% margin for the combined design,
when the ultimate limit states identified through the characteristic
values are considered. For the benchmark example considered in
this work, the verifications for limit states ‘‘ED ULS k’’ and ‘‘CD ULS
k’’ aremore stringent than the verifications for limit states ‘‘ED ULS
m’’ and ‘‘CD ULS m’’. In fact, the increment of the ultimate load
qud, when the ultimate limit states based on the mean values are
considered, is not compensated by the increment of coefficientγRd.

4. Conclusions

This paper presents a simplified framework for nonlinear prob-
abilistic response analysis of continuous steel–concrete compos-
ite (SCC) girders. The proposed methodology is based on the
First-Order Second-Moment (FOSM) approximation. The compu-
tation of the required response sensitivities is performed using the
Direct Differentiation Method (DDM). This framework provides a
computationally efficient numerical simulation of the behavior of
SCC girders, while including the influence of uncertainties of ma-
terial constitutive parameters.
In this study, two design criteria for continuous SCC girders

are compared using the proposed nonlinear probabilistic response
analysis framework. The design criteria considered are the elastic
design, which employs the elastic resistance of all cross sections,
and the combined design, which uses the plastic resistance of the
cross sections in the sagging regions and the elastic resistance
of the cross sections in the hogging regions. A finite element
composite beam model with deformable shear connection is
adopted for nonlinear probabilistic response analysis. Results
obtained for a realistic three-span continuous SCC road bridge,
used as the benchmark problem, show that:

(1) The girder designed with the elastic approach and the girder
designed with the combined approach both have an almost
global linear behavior under the design loads. In addition,
the response uncertainties due to uncertainties in material
constitutive parameters are limited under the design loads.
In fact, the coefficients of variation of the main response
quantities are all below 4%.

(2) When the attainment of the elastic limit of the cross sections
at the supports (slender cross sections) is assumed as ultimate
limit state, both designs have over-strength factors larger than
1.5, obtained by comparing the fractile 0.05 of the capacity and
the fractile 0.95 of the demand. For this specific benchmark
example, verifications according to the Eurocode safety format
are satisfied for both the elastic and combined designs, using
both deterministic and probabilistic results.

Even if the results presented in this work are limited to the
benchmark problem considered, the formulation presented here
for probabilistic nonlinear response analysis of SCC girders is a
general, computationally efficient and relatively simple tool for
studying various composite girder behavioral aspects, and for
quantifying the influence of uncertainties of material constitutive
properties on the numerically simulated response of SCC girders.
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Table 3
Verifications according to the Eurocode safety format (DL= design loads).

ULS qud/DL γRd γO MRd(qud/(γRdγO)) (kN m) MEd(DL) (kN m) MRd/MEd

ED ULS m 1.925 1.06 1.20 130267.33 85339.28 1.53
ED ULS k 1.765 1.00 1.20 124728.39 86741.98 1.44
CD ULS m 1.679 1.06 1.20 120908.97 93983.28 1.29
CD ULS k 1.520 1.00 1.20 115254.81 95141.31 1.21
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