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Abstract: This paper presents new closed-form analytical approximations to the first-passage problem in structural reliability by using the
exact closed-form solutions for the spectral characteristics of nonstationary random processes. The first-passage problem applied to a struc-
tural system possibly with random parameters and subjected to stochastic loading consists of computing the probability of a response quantity
exceeding a deterministic threshold in a given exposure time. This paper also investigates, on the basis of benchmark problems, the absolute
and relative accuracy of analytical approximations of the time-variant failure probability, such as Poisson, classical Vanmarcke, and modified
Vanmarcke approximations, in the case of nonstationary random vibration. The classical and modified Vanmarcke approximations are ex-
pressed as time integrals of the closed forms of the corresponding hazard functions. These closed forms refer to linear elastic systems sub-
jected to stationary and nonstationary base excitation from at-rest initial conditions, and they are obtained using recently developed exact
closed-form solutions for the time-variant bandwidth parameter. These closed-form Vanmarcke’s approximate solutions to the first-passage
problem are compared with the well known Poisson approximation and accurate simulation results obtained via the importance sampling
using elementary events (ISEE) method for two benchmark applications: (1) a set of linear elastic single-degree-of-freedom (SDOF) systems
defined by different natural periods and damping ratios, and (2) an idealized, yet realistic three-dimensional asymmetric steel building model.
The linear elastic SDOF systems are subjected to white noise base excitation from at-rest initial conditions, while the steel building model is
subjected, from at-rest initial conditions, first to white noise and then to a time-modulated colored noise base excitation. The retrofit of this
second benchmark structure with viscous dampers is also considered, illustrating (1) the use of the newly available closed-form approx-
imations of the failure probability for nonclassically damped linear elastic systems, and (2) an example of practical use in structural engineer-
ing of the presented analytical solutions. The results presented in this study show that, for nonstationary random vibration problems, the
two Vanmarcke approximations can improve considerably the estimates of the time-variant failure probability for the first-passage problem
when compared with the simpler Poisson approximation. DOI: 10.1061/(ASCE)EM.1943-7889.0000238.© 2011 American Society of Civil
Engineers.
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Introduction

In many engineering fields, the importance of using stochastic
processes to model dynamic loads such as earthquake ground mo-
tions and wind action on civil structures, ocean wave-induced
forces on ships and offshore structures, effects of road/track surface
roughness on automotive structures, and atmospheric turbulence on
aerospace structures has been widely recognized. Extensive re-
search has been devoted to the development of analytical methods
and numerical simulation techniques related to modeling of sto-
chastic loads and analysis of their effects on structures (Lin
1976; Priestley 1987; Lutes and Sarkani 2004). These effects

are stochastic in nature and, in general, are represented by random
processes that are nonstationary in both amplitude and frequency
content (Yeh and Wen 1990; Papadimitriou 1990; Conte 1992).
Modern design codes consider loading uncertainty as well as
parameter and modeling uncertainties to ensure satisfactory de-
signs. Methodologies for time-variant reliability analysis have
gained significant importance, as they provide a sound analytical
basis for evaluating probabilistically the satisfaction of prescribed
structural performance criteria, e.g., in the context of the emerging
performance-based earthquake engineering (PBEE) methodology
(Cornell and Krawinkler 2000; Moehle and Deierlein 2004) and
the new generation of seismic design codes inspired by the PBEE
methodology [AASHTO 1998; International Code Council (ICC)
2003; Building Seismic Safety Council (BSSC) 2004; Applied
Technology Council (ATC) 2006].

The probability of failure over a given interval of time (i.e.,
probability of a response vector process outcrossing a general
limit-state surface during an exposure time) is the fundamental re-
sult sought in a time-variant reliability analysis. For a large class of
structural applications, the failure condition can be identified as the
exceedance of a scalar deterministic threshold by a linear combi-
nation of scalar response quantities. To date, no exact closed-form
solution of this problem (referred to in the literature as the first-
passage problem) is available, even for the simplest case of
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structural model [deterministic linear elastic single-degree-of-
freedom (SDOF) system] subjected to the simplest stochastic load
model (stationary Gaussian white noise). The Monte Carlo
simulation technique is the only general method accommodating
for nonstationarity and non-Gaussianness of the excitation as well
as nonlinearity in the structural behavior and uncertainty/
randomness in the structural parameters. However, it is computa-
tionally extremely expensive, if not impossible. Nevertheless, an
analytical upper bound of the time-variant probability of failure
can be readily obtained when the mean outcrossing rates of the
response quantities of interest are available (Lin 1976). Several
direct approximations of this failure probability also exist that make
use of various statistics of the response quantities of interest
(Crandall 1970; Wen 1987). In particular, Poisson and Vanmarcke
approximations offer a good compromise between accuracy and
computational effort (Rice 1944, 1945; Corotis et al. 1972).
Vanmarcke suggested two different approximations (Vanmarcke
1975), called classical and modified Vanmarcke approximation,
respectively, which both require the computation of the bandwidth
parameter of the considered stochastic process in addition to the
other stochastic moments required for computing the mean out-
crossing rate and Poisson approximation. The two Vanmarcke ap-
proximations were first derived for stationary problems (stationary
Vanmarcke approximations), and then extended to nonstationary
problems (nonstationary Vanmarcke approximations) (Corotis et al.
1972; Vanmarcke 1975). More recent work by Di Paola (1985) and
Michaelov et al. (1999a, b) provided new insight into the non-
stationary spectral characteristics required by the nonstationary
Vanmarcke approximations, suggesting a more appropriate defini-
tion of the bandwidth parameter for real-valued nonstationary
random processes. In previous work (Barbato and Conte 2008),
the writers extended these last results to the computation of stochas-
tic characteristics of complex-valued nonstationary random proc-
esses and used such extension for finding the exact closed-form
solution of the time-variant bandwidth parameter for the classical
problem of SDOF and multi-degree-of-freedom (MDOF) linear
elastic systems subjected to white noise excitation from at rest
initial conditions. In Barbato and Vasta (2010), the closed-form
solution of the time-variant bandwidth parameter was found for
classically and nonclassically damped MDOF linear elastic systems
subjected to time-modulated colored noise excitation.

This paper focuses on closed-form analytical approximations to
the first-passage problem in structural reliability. After defining the
problem, existing analytical approximations are briefly reviewed.
Then, the exact closed-forms for the spectral characteristics of non-
stationary random processes, recently derived by the writers, are
used to define integral representations of such analytical approxi-
mations of the time-variant failure probability, namely Poisson,
classical Vanmarcke, and modified Vanmarcke approximations.
Finally, two sets of benchmark models, consisting of a set of linear
elastic SDOF systems with different natural periods and damping
ratios and a realistic three-dimensional asymmetric three-story
building model, are used to compare these analytical approxima-
tions with accurate simulation results obtained through the impor-
tance sampling using elementary events (ISEE) method (Au and
Beck 2001a). The absolute and relative accuracy of the considered
closed-form approximations to the time-variant failure probability,
obtained at a very small fraction of the computational cost of the
ISEE results, is carefully investigated for a wide range of values of
the failure probability. To the writers’ knowledge, this paper
presents the first rigorous appraisal of the accuracy of the two
Vanmarcke approximations of the time-variant failure probability
for the first-passage reliability problem in the context of nonstation-
ary random vibration.

Structural reliability analysis of nonlinear (deterministic or
uncertain) dynamic systems is a very active area of research.
Several methodologies have been recently developed to numeri-
cally estimate the time-variant failure probability relative to the
first-passage problem for nonlinear dynamic models of structures,
e.g., the subset simulation method (Au and Beck 2001b; Ching et al.
2005a, b; Katafygiotis and Cheung 2005), the tail equivalent lin-
earization method (Fujimura and Der Kiureghian 2007), the path
integration method (Naess and Moe 2000), advanced/enhanced
Monte Carlo simulation-based methods (Pradlwarter and Schueller
2004; Pradlwarter et al. 2007; Naess et al. 2009), and the hybrid
design point—response surface—simulation method (Barbato et al.
2008). Analytical solutions for the time-variant failure probability,
such as the ones presented in this paper for the case of linear
elastic systems subjected to Gaussian nonstationary excitations,
are extremely useful for validation, in the linear range, of both
existing and new numerical methods for time-variant structural
reliability analysis.

First-Passage Problem in Structural Reliability

In the present study, the time-variant probability of failure of a dy-
namic structural system is defined as the probability that a quantity
(linearly) related to the displacement and velocity responses (e.g.,
absolute displacement, relative displacement, elastic force) of the
system exceeds a given (deterministic and time-invariant) threshold
ζ. The problem of evaluating this time-variant probability of failure
is also known as first-passage problem and has been presented in
the literature as single-barrier problem (random process upcrossing
or downcrossing a given threshold) or as double-barrier problem
(absolute value of the random process exceeding a given threshold).

An analytical upper bound of the time-variant probability of
failure, Pf ;Xðζþ; tÞ, is obtained by integrating in time the mean
upcrossing rate, νXðζþ; tÞ, of the considered process, XðtÞ, corre-
sponding to the fixed deterministic threshold ζþ (single-barrier
problem), as

Pf ; Xðζþ; tÞ ¼
X∞
n ¼ 1

P½NðtÞ ¼ n� ≤ X∞
n ¼ 1

n · P½NðtÞ ¼ n� ¼ E½NðtÞ�

¼
Z

t

0
νXðζþ; τÞdτ ð1Þ

where E½…� = expectation operator; and NðtÞ = number of upcross-
ings up to time t. The mean upcrossing rate νXðζþ; tÞ can be ob-
tained from the well known Rice formula (Rice 1944, 1945), for
which a closed-form solution is available in the case of Gaussian
processes (Lutes and Sarkani 2004). In general, a numerical esti-
mate of νXðζþ; tÞ can be obtained through the limiting formula pro-
posed by Hagen and Tvedt (1991). The time-variant failure
probability Pf ;Xðζþ; tÞ is commonly expressed in the following
functional form:

Pf ;Xðζþ; tÞ ¼ 1� P½Xðt ¼ 0Þ < ζþ� · exp
�
�
Z

t

0
hXðζþ; τÞdτ

�

ð2Þ
where P½Xðt ¼ 0Þ < ζþ� = probability that, at time t ¼ 0, the ran-
dom process XðtÞ is below the failure threshold ζþ (i.e., probability
that the system is safe at time t ¼ 0); and hXðζþ; tÞ = time-variant
hazard function defined such that hXðζþ; tÞdt = probability of an
upcrossing of level ζþ during the time interval [t, t þ dt] given
no upcrossing up to time τ (i.e., probability of first upcrossing event
in time interval [t, t þ dt]). For at rest initial conditions,
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P½Xðt ¼ 0Þ < ζþ� ¼ 1. Up to date, only approximate analytical and
numerical solutions are available for the hazard function even for
the simplest dynamic system, i.e., deterministic linear elastic SDOF
oscillator (Crandall 1970). Extension of the functional form in
Eq. (2) to the double-barrier problem is straightforward and can
be formally expressed as

Pf ;jXjðζ; tÞ ¼ 1� P½jXðt ¼ 0Þj < ζ� · exp
�
�
Z

t

0
hjXjðζ; τÞdτ

�

ð3Þ
where Pf ;jXjðζ; tÞ and hjXjðζ; tÞ = time-variant probability of failure
and hazard function, respectively, for process jXðtÞj and threshold
level ζ. In this paper, both single- and double-barrier problems are
considered. It is noticed here that, once the time-variant hazard
function is known, the failure probability can be estimated by
evaluating, through numerical quadrature, the time integrals in
Eqs. (2) and (3).

The simplest approximation for the hazard function is the
Poisson hazard function, hX;Pðζþ; tÞ ¼ νXðζþ; tÞ, obtained by as-
suming that the upcrossing events are statistically independent with
their occurrence in time following a (memoryless) Poisson process.
This assumption becomes increasingly accurate for increasing re-
sponse threshold level and increasing bandwidth of the response
process (e.g., as produced by increasing the damping level in a lin-
ear elastic system). For low threshold levels and/or narrow-band
processes, the Poisson hazard function yields conservative values
of the probability of failure. An improved estimate of the time-vari-
ant failure probability has been developed by Vanmarcke (1975),
considering the envelope process as defined by Cramer and
Leadbetter (1967). This improved estimate, referred to as classical
Vanmarcke approximation, is developed on the basis of the two-
state Markov process assumption and takes into account (1) the
fraction of time, termed fractional time, that the envelope process
spends above the threshold level ζ, and (2) the fact that upcrossings
of the envelope process are not always associated with one or more
upcrossings of the process itself. The first consideration is impor-
tant for low threshold levels, while the second consideration can be
relevant for high threshold levels. The hazard function obtained for
the nonstationary case is

hX;VMðζþ; tÞ ¼ νXðζþ; tÞ ·
1� exp

�
� ffiffiffiffiffiffi

2π
p

· qðtÞ · ζþ
σXðtÞ

�

1� exp

�
� 1

2

�
ζþ

σXðtÞ

�
2
� ð4Þ

where qðtÞ = time-variant bandwidth parameter; and σXðtÞ = time-
variant standard deviation of process XðtÞ. Vanmarcke (1975) also
suggested an empirical modification of Eq. (4), in which the
bandwidth parameters qðtÞ are substituted with ½qðtÞ�1:2, to account
for superclamping effects, leading to the modified Vanmarcke
approximation

hX;mVMðζþ; tÞ ¼ νXðζþ; tÞ ·
1� exp

�
� ffiffiffiffiffiffi

2π
p

· ½qðtÞ�1:2 · ζþ
σXðtÞ

�

1� exp

�
� 1

2

�
ζþ

σXðtÞ

�
2
�

ð5Þ
The hazard functions for the double-barrier problem corre-

sponding to those in Eqs. (4) and (5) were derived for Gaussian
processes and are obtained by substituting in these equations ζþ
with ζ, νXðζþ; tÞ with νjXjðζ; tÞ ¼ 2νXðζþ; tÞ, and

ffiffiffiffiffiffi
2π

p
withffiffiffiffiffiffiffiffi

π=2
p

. In the original formulation (Corotis et al. 1972; Vanmarcke
1975), the bandwidth parameter was computed from the convergent

part of the integrals defining the geometric spectral moments of the
process of interest. In this paper, the bandwidth parameter is cor-
rectly computed from the nongeometric spectral characteristics of
the considered stochastic process (Michaelov et al. 1999a), and its
exact closed form, derived in Barbato and Conte (2008), is given in
the next section.

Use of Spectral Characteristics in Structural
Reliability

The spectral characteristics of a process XðtÞ are necessary to
compute its mean upcrossing rates and hazard functions. The
nongeometric spectral characteristics of two zero-mean random
processes X1ðtÞ and X2ðtÞ considered jointly are defined as
(Barbato and Conte 2008)

cik;X1X2
ðtÞ ¼

Z ∞
�∞

Φ
XðiÞ
1 XðkÞ

2
ðω; tÞ dω ¼ σ

XðiÞ
1 XðkÞ

2
ðtÞ ð6Þ

in which Φ
XðiÞ
1 XðkÞ

2
ðω; tÞ = evolutionary cross-power spectral density

(Priestley 1987) of processes XðiÞ
1 ¼ diX1=dti and X

ðkÞ
2 ¼ dkX2=dtk;

and σ
XðiÞ
1 XðkÞ

2
ðtÞ= time-variant cross covariance of processes XðiÞ

1 and

XðkÞ
2 . The particular case X1ðtÞ ¼ X2ðtÞ ¼ XðtÞ gives c00;XXðtÞ ¼

σ2
XðtÞ, c11;XXðtÞ ¼ σ2

_X
ðtÞ, and c01;XXðtÞ ¼ σX _XðtÞ ¼ ρX _XðtÞ·

σXðtÞ · σ _XðtÞ, in which ρX _XðtÞ = cross-correlation coefficient be-
tween process XðtÞ and its first time derivative _XðtÞ. A superposed
dot denotes differentiation with respect to time. For the particular
case X1ðtÞ ¼ XðtÞ and X2ðtÞ ¼ YðtÞ = auxiliary process obtained as
time modulation (by the same modulating function as the process
XðtÞ) of the Hilbert transform of the stationary process embedded in
XðtÞ (Michaelov et al. 1999a), the first-order spectral characteristic
c01;XYðtÞ ¼ σX _YðtÞ is obtained. The auxiliary process YðtÞ is com-
monly used to define the envelope and phase processes of a non-
stationary process (Muscolino 1988). The time-variant bandwidth
parameter qðtÞ of process XðtÞ is computed as

qðtÞ ¼
�
1� σ2

X _Y
ðtÞ

σ2
XðtÞ · σ2

_X
ðtÞ

�
1=2

ð7Þ

Eq. (7) was derived in Barbato and Conte (2008) by extending the
definition of the bandwidth parameter qðtÞ for real-valued non-
stationary processes (Michaelov et al. 1999a) to complex-valued
nonstationary processes. It can be shown that the value of qðtÞ
defined in Eq. (7) is bounded between 0 and 1 for real-valued proc-
esses, with values close to 0 corresponding to narrow-band proc-
esses and values close to 1 corresponding to broad-band processes.

Application Examples

SDOF Linear Elastic Oscillators

The first application example consists of a linear elastic SDOF
oscillator subjected to a zero-mean Gaussian white noise base ex-
citation time-modulated by a unit-step function, i.e., with at-rest
initial conditions. For this problem, exact solutions for the time-
variant spectral characteristics up to the second order are available
in closed form (Barbato and Conte 2008). Fig. 1 plots the normal-
ized second-order stochastic moments of the displacement (relative
to the base) UðtÞ and its first time derivative _UðtÞ of a linear elastic
SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05. These closed-form solutions are applied in this study
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to obtain exact time-variant mean upcrossing rates, as well as
Poisson and Vanmarcke approximations to the time-variant failure
probability for the double-barrier problem, as defined previously.
The relative displacement response UðtÞ of the system is a zero-
mean Gaussian process, for which the exact time-variant mean
upcrossing rate for a given deterministic threshold is available in
closed form. The effects on the failure probability of the system
parameters (i.e., natural circular frequency ω0 and damping ratio
ξ) and response threshold level (normalized with respect to the sta-
tionary value of the standard deviation of the response process as
ζ=σU∞) are investigated using the closed-form solutions available.
The effect of the intensity of the excitation can be obtained indi-
rectly from the effect of the threshold level, since, because of sys-
tem linearity, the response scales linearly with respect to the
intensity or magnitude of the excitation as measured by the square
root of the white noise power spectral density,

ffiffiffiffiffiffi
Φ0

p
(m=s3=2).

Figs. 2–7 show some selected analysis results for the outcross-
ing of specified threshold levels (double-barrier problem) by the
response of a linear elastic SDOF system with natural period
T0 ¼ 0:5 s and damping ratio ξ ¼ 0:05 subjected to a white
noise base excitation of power spectral density Φ0 ¼ 1 m2=s3 from
at-rest initial conditions. Figs. 2, 4, and 6 plot the time-variant mean
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Fig. 1. Second-order stochastic moments of the response of linear elas-
tic SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05 (Y denotes the auxiliary process of process U)
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Fig. 2. Mean upcrossing rate and classical and modified Vanmarcke
hazard functions of the relative displacement response of linear elastic
SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05 relative to threshold level ζ ¼ 2:0σU∞

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time [s]

E
N

P
f

P
P

f 
V

M
P

f 
m

V
M

P
f 

si
m

Pf mVM

Pf P

Pf VM

E N

Pf sim

Fig. 3. Approximations of time-variant failure probability of linear
elastic SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05 for relative displacement threshold level ζ ¼ 2:0σU∞
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Fig. 4. Mean upcrossing rate and classical and modified Vanmarcke
hazard functions of the relative displacement response of linear
elastic SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05 relative to threshold level ζ ¼ 3:0σU∞
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Fig. 5. Approximations of time-variant failure probability of linear
elastic SDOF system with natural period T0 ¼ 0:5 s and damping ratio
ξ ¼ 0:05 for relative displacement threshold level ζ ¼ 3:0σU∞
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outcrossing rate, ν, the classical Vanmarcke hazard function, hVM,
and the modified Vanmarcke hazard function, hmVM, for the relative
displacement response process UðtÞ of the linear elastic SDOF sys-
tem defined previously and response threshold levels ζ ¼ 2σU∞,
3σU∞, and 4σU∞, respectively, in which σU∞ = stationary standard
deviation of response process UðtÞ. Figs. 3, 5, and 7 show, for
the same SDOF system, the time-variant expected number of out-
crossings, E[N], and the time-variant failure probability estimates
obtained from the Poisson approximation, Pf ;P, the classical
Vanmarcke approximation, Pf ;VM, and the modified Vanmarcke
approximation, Pf ; mVM, respectively. Figs. 3, 5, and 7 also provide
the failure probability at different instants of time obtained by ISEE
(Au and Beck 2001a) with a coefficient of variation c:o:v: ¼ 0:01,
Pf ;sim. The equations needed to compute the estimates of the failure
probability, Pf ;sim, and of its coefficient of variation, c:o:v:ðPf ;simÞ,
are taken from Au and Beck (2001a). The value of c:o:v:ðPf ;simÞ ¼
0:01 was chosen to obtain accurate estimates of the time-variant
failure probability. It is noteworthy that the computational time cor-
responding to each analytical approximate solution for the time his-
tory of the time-variant failure probability is several hundred times

smaller than the computational time required to obtain the ISEE
estimate of the time-variant failure probability at a single instant
of time.

For the case corresponding to the threshold level ζ ¼ 2σU∞,
the hazard functions obtained using the classical and modified
Vanmarcke approximations assume much lower values than the
corresponding mean outcrossing rate, as shown in Fig. 2. For
the very high values of the failure probability found in this case,
the analytical upper bound provided by E[N] is not useful, since
the expected number of outcrossings is larger than one after about
3 s of white noise excitation, and the Poisson approximation largely
overestimates the probability of failure (see Fig. 3). On the other
hand, the two Vanmarcke approximations are both in good agree-
ment with the simulation results, with better agreement reached by
the classical Vanmarcke approximation for t ≤ 2:5 s and by the
modified Vanmarcke approximation for t ≥ 3:0 s. In this specific
case, the failure probability at different instants of time was also
computed using crude Monte Carlo simulation (MCS), the use
of which was possible because of the large values assumed by
the time-variant probability of failure. The results obtained by
crude MCS were found in very good agreement with those resulting
from ISEE.

The mean outcrossing rate corresponding to the threshold
ζ ¼ 3σU∞ is larger than the classical and modified Vanmarcke haz-
ard functions (see Fig. 4), but the relative differences are smaller
than for lower response thresholds. It is also observed that as the
response threshold increases, the time required for the mean
outcrossing rate and the hazard functions to reach stationarity in-
creases as well. From the comparison of the analytical approxima-
tions of the time-variant failure probability with the accurate
ISEE-based estimate thereof shown in Fig. 5, it is observed that:
(1) the expected number of outcrossings (analytical upper bound
of the failure probability) is almost double the failure probability
obtained by ISEE, and the Poisson approximation improves only
slightly over the upper-bound results; (2) the two Vanmarcke ap-
proximations provide good estimates of the failure probability, but
in this case, the classical Vanmarcke approximation is in better
agreement overall with the ISEE results. Nevertheless, the ISEE
results shift progressively away from the classical to the modified
Vanmarcke approximation results as time elapses.

For the relative displacement response threshold ζ ¼ 4σU∞, the
relative differences between the Vanmarcke approximations and the
mean outcrossing rate are smaller than for lower thresholds, as
shown in Fig. 6. In this case, the expected number of outcrossings
and the Poisson approximation practically coincide, and their
relative differences with the ISEE results are lower than in the pre-
vious two cases (see Fig. 7). The classical Vanmarcke approxima-
tion almost coincides with the ISEE results, whereas the modified
Vanmarcke approximation underestimates the failure probability.

Fig. 8 compares the estimated relative displacement response
hazard curves (i.e., failure probability versus normalized relative
displacement threshold) with ISEE results for the considered linear
elastic SDOF system subjected to 5.0 s of white noise base exci-
tation from at-rest initial conditions. The failure probability esti-
mates are computed on the basis of the Poisson approximation
as well as the classical and modified Vanmarcke approximations.
The ISEE results have a coefficient of variation of 1% for the failure
probability estimate and are therefore accurate. As expected from
previous results available in the literature (Crandall 1970), it is ob-
served that the two Vanmarcke approximations provide signifi-
cantly improved estimates of the failure probability compared
with the Poisson approximation, particularly in the threshold level
range 2 ≤ ζ=σU∞ ≤ 4. For increasing threshold levels, all three
approximations appear to converge asymptotically to the “exact”
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failure probability. Notice that the analytical relative displacement
response hazard curves are computed for a constant threshold level
increment of 0:1σU∞ and are obtained at an extremely small frac-
tion of the computational cost of the ISEE results. Table 1 reports
the values of the time-variant failure probability estimated using the
Poisson approximation, the classical and modified Vanmarcke ap-
proximations, and ISEE analysis for a linear elastic SDOF system
with natural period T0 ¼ 0:5 s, subjected to white noise base

excitation from at-rest initial conditions. Results are given for
different normalized relative displacement response thresholds
(ζ=σU∞ ¼ 2, 3, and 4, i.e., the range in which the various approx-
imations differ the most as shown in Fig. 8), several damping ratios
(ξ ¼ 1, 5, 10%), and different exposure times (normalized with re-
spect to the natural period, i.e., 5T0 and 10T0). From the results
shown in Table 1, the following observations are made: (1) the
two Vanmarcke approximations provide failure probability esti-
mates in better agreement with the ISEE analysis results (i.e., more
accurate) than the Poisson approximation; (2) the accuracy of the
modified Vanmarcke approximation improves with increasing
exposure time to the white noise excitation; and (3) the relative
accuracy of the two Vanmarcke approximations in estimating
the failure probability depends on both the order of magnitude
of the failure probability (for small failure probabilities, e.g.,
Pf < 1e� 4, the classical Vanmarcke approximation is more accu-
rate than the modified Vanmarcke approximation) and the damping
ratio (for ξ ¼ 5%, the modified Vanmarcke approximation tends to
be more accurate than the classical Vanmarcke approximation; for
ξ ¼ 10%, the classical Vanmarcke approximation is more accurate
than the modified Vanmarcke approximation; and for ξ ¼ 1%, the
more accurate of the two Vanmarcke approximations depends on
the exposure time and the magnitude of the failure probability).

Three-Dimensional Asymmetric Building (Linear Elastic
MDOF System)

The idealized three-dimensional (3D) asymmetric building shown
in Fig. 9 is used in this study as a benchmark problem of a linear
elastic MDOF system. This building consists of three floor dia-
phragms, assumed infinitely rigid in their own plane, supported
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curves obtained via Poisson approximation, classical and modified
Vanmarcke approximations, and ISEE results for linear elastic SDOF
system with natural period T0 ¼ 0:5 s and damping ratio ξ ¼ 0:05

Table 1. Time-Variant Failure Probability for Linear Elastic SDOF System with Natural Period T0 ¼ 0:5 s Subjected to White Noise Base Excitation from
At-Rest Initial Conditions

Damping ratio ξ Estimatesa ζ ¼ 2:0σU∞ ζ ¼ 3:0σU∞ ζ ¼ 4:0σU∞
t ¼ 5T0 t ¼ 10T0 t ¼ 5T0 t ¼ 10T0 t ¼ 5T0 t ¼ 10T0

1% P 0.030 0.339 8:1e� 5 7:7e� 3 2:9e� 8 3:8e� 5

VM 0.018 0.166 5:7e� 5 4:1e� 3 2:3e� 8 2:4e� 5

mVM 0.015 0.129 4:8e� 5 3:1e� 3 2:0e� 8 1:9e� 5

ISEE 0.016 0.123 5:5e� 5 3:3e� 3 2:5e� 8 2:2e� 5

5% P 0.507 0.868 0.038 0.134 7:7e� 4 3:8e� 3

VM 0.346 0.678 0.026 0.087 5:8e� 4 2:7e� 3

mVM 0.301 0.607 0.022 0.074 5:1e� 4 2:4e� 3

ISEE 0.323 0.601 0.025 0.076 6:1e� 4 2:7e� 3

10% P 0.641 0.907 0.070 0.168 1:9e� 3 5:3e� 3

VM 0.506 0.798 0.053 0.126 1:6e� 3 4:3e� 3

mVM 0.462 0.752 0.048 0.114 1:5e� 3 3:9e� 3

ISEE 0.521 0.801 0.054 0.122 1:7e� 3 4:6e� 3
aP = Poisson, VM = Vanmarcke, and mVM = modified Vanmarcke.
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by wide flange steel columns of section W14 × 145. Each floor
diaphragm consists of an 18-cm-thick reinforced-concrete slab with
a weight density of 36 kN=m3. The axial deformations of the col-
umns are neglected. The modulus of elasticity of steel is taken as
200 GPa. The motion of each floor diaphragm is completely
defined by three DOFs defined at its center of mass, namely the
relative displacements with respect to the ground in the x-direction,
UXi, and in the y-direction, UYi, and the rotation about the vertical
z-axis,ΘZi, with i ¼ 1, 2, and 3. Both classically and nonclassically
damped structural models of this building are considered in this
study. For the case of classical damping, each modal damping ratio
is taken as 2%. To physically realize the nonclassical damping case,
diagonal viscous damping elements (e.g., fluid viscous braces) are
added as shown in Fig. 9. The damping coefficient of each viscous
damping element is taken as 0:1 kN·s=mm. The undamped natural
circular frequencies of this building are given in Table 2.

White Noise Base Excitation
As a first benchmark for linear elastic MDOF systems, the building
considered here is subjected, from at-rest initial conditions, to an
earthquake ground motion (defined in terms of ground accelera-
tion) acting at 45° with respect to the x-axis and modeled as a white
noise process with power spectral density Φ0 ¼ 0:0625 m2=s3.
Figs. 10–20 show some selected results of the time-variant reliabil-
ity analysis of the considered building structure with and without
the viscous dampers. Three response quantities are considered: the
horizontal displacement at the third floor in the x-direction, UX3
(Figs. 10–14), which is the weak direction of the building along

Table 2. Undamped Natural Frequencies and Description of Vibration
Mode Shapes of the 3D Asymmetric Building Example

Mode # ωi (rad=s) Ti (s) Mode shape description

1 15.97 0.393 x-translation

2 24.12 0.261 y� translationþ torsion

3 36.56 0.172 x-translation

4 41.21 0.153 y� translationþ torsion

5 56.74 0.111 y� translationþ torsion

6 56.98 0.110 x-translation

7 73.88 0.085 y� translationþ torsion

8 95.15 0.066 y� translationþ torsion

9 127.69 0.049 y� translationþ torsion
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Fig. 11. Mean outcrossing rate and classical and modified Vanmarcke
hazard functions for the DOF UX3 and deterministic threshold
ζ ¼ 0:114 m (classically damped 3D building subjected to white noise
base excitation)
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Fig. 16. Comparison of analytical approximations with ISEE estimate
of the time-variant failure probability for DOF UY3 and deterministic
threshold ζ ¼ 0:114 m (classically damped 3D building subjected to
white noise base excitation)
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Fig. 17. Comparison of analytical approximations with ISEE estimate
of the time-variant failure probability for DOF UY3 and deterministic
threshold ζ ¼ 0:114 m (nonclassically damped 3D building subjected
to white noise base excitation)
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of the time-variant failure probability forΔX3 and deterministic thresh-
old ζ ¼ 0:114 m (classically damped 3D building subjected to white
noise base excitation)

378 / JOURNAL OF ENGINEERING MECHANICS © ASCE / MAY 2011

Downloaded 12 May 2011 to 173.253.224.202. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



which the dampers are active; the horizontal displacement at the
third floor in the y-direction, UY3 (Figs. 15–17), which is the
strong direction of the building; and the horizontal drift between
the third and second floors in the x-direction, ΔX3 ¼ UX3 � UX2
(Figs. 18–20). As in the first application example, the results
presented refer to the double-barrier first-passage problem for
the considered response quantities.

Fig. 10 plots the time histories of the normalized variance and
bandwidth parameter of UX3 for both the classically and nonclassi-
cally damped 3D asymmetric building. The displacement response
variances are normalized with respect to the variance of UX3 at time
t ¼ 5:0 s for the classically damped system (i.e., building without
viscous dampers). The addition of viscous dampers to the building
produces two distinct effects on the variance of the response UX3:
(1) the variance is significantly reduced (at time t ¼ 5:0 s,
σ2
d=σ2

u ¼ 0:39), and (2) the response stationarity conditions are
reached much faster. The effects of the viscous dampers on the time
history of the bandwidth parameter are the reduction of the time
needed to reach stationarity and the increase of the stationary value,
which are consistent with the increase of damping in the system
(see Barbato and Conte 2008).

Fig. 11 shows the time-variant mean outcrossing rate, ν, as well
as the classical and modified Vanmarcke hazard functions (i.e., hVM
and hmVM, respectively) for the DOF UX3 corresponding to the
deterministic threshold ζ ¼ 0:114 m (i.e., roof drift ratio ¼ 1%)
and relative to the classically damped 3D building. The two
Vanmarcke hazard functions are significantly lower than the mean
outcrossing rate function. Fig. 12 compares, for the same analysis
case considered in Fig. 11, the various analytical approximations of
the failure probability (i.e., expected number of outcrossings, E[N],
Poisson approximation, Pf ;P, classical Vanmarcke approximation,
Pf ;VM, and modified Vanmarcke approximation, Pf ; mVM) with the
simulation results obtained using the ISEE method, Pf ;sim. In this
specific case, the simulation results are almost in perfect agreement
with the modified Vanmarcke approximation. The failure probabil-
ity after 5.0 s of excitation is of the order of 1%. This failure prob-
ability (conditional on the given magnitude Φ0 of the white noise
ground motion excitation) is quite large and can be considered
unsatisfactory for the given threshold, thus suggesting a retrofit
of the building using the viscous damping system previously de-
fined. Figs. 13 and 14 show the same information as in Figs. 11
and 12, respectively, but for the case of the nonclassically damped

building (i.e., building with viscous dampers). The mean outcross-
ing rate and hazard functions are four orders of magnitude
lower and the failure probability estimates seven orders of magni-
tude lower than for the classically damped building (i.e., building
without viscous dampers). In this case, the classical Vanmarcke
approximation is in better agreement with the ISEE results (i.e.,
more accurate) than the modified Vanmarcke approximation; it
slightly underestimates the time-variant failure probability. In this
case, the effectiveness of viscous dampers in reducing the proba-
bility of DOF UX3 outcrossing the level considered is noteworthy.

Fig. 15 plots the time histories of the normalized variance and
bandwidth parameter of UY3 for both the classically and nonclassi-
cally damped 3D asymmetric building. The displacement response
variances are normalized with respect to the variance of UY3 at time
t ¼ 5:0 s for the classically damped system. The effects of the vis-
cous dampers on the statistics of UY3 are very small and consist of a
small reduction in the variance of UY3, whereas the changes in the
time history of the bandwidth parameter are not visible at the scale
used in Fig. 15. This result was expected, since the action of the
viscous dampers is directed along the x-direction of the building
and affects the y-direction only indirectly, through the coupling
with the torsional modes of vibration. Figs. 16 and 17 provide a
comparison of the various analytical approximations with the
ISEE-based estimate of the failure probability related to UY3
and threshold ζ ¼ 0:114 m for the classically and nonclassically
damped 3D asymmetric building, respectively. In this case, the fail-
ure probability is already very small for the classically damped
building and reduces further by a factor of 2 for the nonclassically
damped building. The simulation results lie between the estimates
from the classical and modified Vanmarcke approximations.

Fig. 18 shows the time histories of the normalized variance and
bandwidth parameter of the interstory drift ΔX3 for both the clas-
sically and nonclassically damped 3D asymmetric building. The
drift response variances are normalized with respect to the variance
ofΔX3 at time t ¼ 5:0 s for the classically damped system. Varian-
ces and bandwidth parameters for drifts and any other response
quantities linearly related to displacement responses can be com-
puted directly from the variances and bandwidth parameters of the
latter quantities (Barbato and Conte 2008). Regarding the normal-
ized variance and bandwidth parameter of ΔX3, it is observed that
(1) the variance of the drift response is much lower for the non-
classically damped than for the classically damped building, (2) sta-
tionarity is reached faster for the nonclassically damped building,
and (3) the stationary value of the bandwidth parameter is lower for
the nonclassically damped than for the classically damped building.
This last observation (which could appear counterintuitive) is
attributable to the fact that although the nonclassically damped
building has higher modal damping ratios (and therefore modal
responses with broader bandwidth), its first mode is more predomi-
nant than in the case of the classically damped building. In other
words, the stationary value of the central frequency of each floor
relative displacement response process is closer to the natural fre-
quency of the predominant mode of vibration in the nonclassically
damped than in the classically damped building (see Barbato and
Conte 2008). Figs. 19 and 20 compare the various analytical
approximations with the ISEE-based estimate of the failure prob-
ability for ΔX3 and threshold ζ ¼ 0:0285 m (corresponding to an
interstory drift ratio of 0.75%) for the classically and nonclassically
damped 3D building, respectively. For the classically damped
building, all the analytical approximations overestimate the failure
probability obtained via the ISEE method, while for the nonclassi-
cally damped building, the ISEE-based results lie between the
classical and modified Vanmarcke approximations. Also for the
response quantity ΔX3, the use of viscous dampers produces a con-
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siderable reduction in the time-variant failure probability (five
orders of magnitude). Also in this second application example,
it is observed that the two Vanmarcke approximations of the
time-variant failure probability are significantly more accurate than
the Poisson approximation.

Time-Modulated Colored Noise Base Excitation
To study the relative accuracy of different analytical approxima-
tions of the time-variant failure probability in the case of strongly
nonstationary input excitations, the benchmark building model
is subjected to a stochastic earthquake base excitation modeled
as a time-modulated colored noise process. In this work, the
Kanai-Tajimi spectrum (Clough and Penzien 1993) is used to
model the basic stationary colored noise process. The Kanai-Tajimi
spectrum represents the stochastic process obtained by filtering a
white noise process through a linear filter representing the effects
of a soil layer between the bedrock and the ground surface. It is
expressed as

ΦAgAg
ðωÞ ¼ Φ0 ·

�
ω4
g þ 4 · ξ2g · ω2

g · ω2

ðω2
g � ω2Þ2 þ 4 · ξ2g · ω2

g · ω2

�
ð8Þ

where ΦAgAg
ðωÞ = PSD function of the ground surface acceleration

process; Φ0 ¼ 0:0625 m2=s3 = intensity of the ideal white noise
acceleration at the base of the soil layer; and ωg ¼ 12:5 rad=s
and ξg ¼ 0:6 represent the natural frequency and damping ratio,
respectively, of the soil layer. Thus, ωg and ξg are measures of
the predominant frequency and bandwidth, respectively, of the
ground surface acceleration.

The ground-motion input to the structure is made nonstationary
in amplitude by using the well known time-modulating function of
Shinozuka and Sato (1967) defined as

AagðtÞ ¼ C · ½expð�B1 · tÞ � expð�B2 · tÞ� ð9Þ

where AagðtÞ = time-modulating function; and C ¼ 25:81, B1 ¼
0:045π, and B2 ¼ 0:05π = constants defining the shape of the
time-modulating function.

Fig. 21 plots the first 30 s of the time histories of the normalized
variance and bandwidth parameter of UX3 for both the classically
and nonclassically damped 3D asymmetric building. The displace-
ment response variances are normalized with respect to the

maximum value assumed by the variance of UX3 for the classically
damped system (i.e., σ2

u;max). The addition of viscous dampers to
the building produces two distinct effects on the variance of the
response UX3: (1) the variance is strongly reduced (σd;max=σu;max ¼
0:63, σu;max=H ¼ 0:31%, σd;max=H ¼ 0:20%, where the height of
the building H ¼ 11:4 m), and (2) its peak value is reached earlier.
The effects of the viscous dampers on the time history of the band-
width parameter are the reduction of the time needed to reach the
asymptotic value and the increase of the asymptotic value. This last
effect is the same as the one observed in the case of white noise
excitation for the stationary value of the bandwidth parameter of
the response process UX3 (see Fig. 10).

Fig. 22 shows the time-variant mean outcrossing rate, ν, as well
as the classical and modified Vanmarcke hazard functions (i.e., hVM
and hmVM, respectively) for the DOF UX3 corresponding to the
deterministic threshold ζ ¼ 0:114 m and relative to the classically
damped 3D building. The two Vanmarcke hazard functions assume
values significantly lower than the mean outcrossing rate function.
For the same analysis case, Fig. 23 compares expected number
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Fig. 23. Comparison of analytical approximations with ISEE estimate
of the time-variant failure probability for DOF UX3 and deterministic
threshold ζ ¼ 0:114 m (classically damped 3D building subjected to
time-modulated colored noise base excitation)
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of outcrossings, E[N], Poisson approximation, Pf ;P, classical
Vanmarcke approximation, Pf ;VM, modified Vanmarcke approxi-
mation, Pf ; mVM, and simulation results obtained using the ISEE
method, Pf ;sim. The ISEE simulation results are in good agreement
with the modified Vanmarcke approximation. The failure probabil-
ity after 30.0 s of excitation is about 5%, thus justifying also in this
case the need to retrofit the building using the viscous damping
system previously defined. Figs. 24 and 25 show the same infor-
mation as Figs. 22 and 23, respectively, but for the case of the build-
ing retrofitted with viscous dampers. The mean outcrossing rate
function, hazard functions, and time-variant failure probability
estimates are more than three orders of magnitude lower than
for the building without viscous dampers. It is observed that the
ISEE results lie between the Poisson and the classical Vanmarcke
approximations. Also in this case, the effectiveness of the viscous
dampers in reducing the probability of DOF UX3 outcrossing the
level considered is noteworthy.

Conclusions

This paper presents the application of spectral characteristics of
nonstationary random processes to the time-variant first-passage
problem in structural reliability. The first-passage problem is
applied to linear elastic models of structural systems and consists
of computing the probability of exceeding a given deterministic
time-invariant threshold by a response quantity (linearly) related
to the displacement and velocity responses (e.g., absolute displace-
ment, relative displacement, elastic force) of the system. This quan-
tity is generally known as time-variant failure probability. Both the
classical and modified Vanmarcke approximations are computed,
through integration (using numerical quadrature) of the closed-
form solutions for the corresponding approximate hazard functions,
for linear elastic SDOF and MDOF systems subjected to stationary
and nonstationary base excitation from at-rest initial conditions.
The closed forms of the two Vanmarcke hazard functions are
obtained using the closed-form solutions for the time-variant band-
width parameter characterizing the nonstationary stochastic process
representing the displacement response considered. These approxi-
mate solutions for the time-variant failure probability are compared
with the well known Poisson approximation and accurate simula-
tion results obtained via the ISEE method for two application ex-
amples: (1) a set of linear elastic SDOF systems, with different
natural periods, damping ratios, and response threshold levels;
and (2) an idealized yet realistic 3D asymmetric steel building
model, both subjected to white noise base excitation from at-rest
initial conditions. For the second application example, retrofit of
the given building with viscous dampers is also considered, serving
a two-fold purpose: (1) to illustrate the use of the newly available
closed-form approximations of the failure probability for nonclassi-
cally damped linear elastic systems, and (2) to show an example of
practical use in structural engineering of the presented analytical
derivations.

The originality of the work presented in this paper stems from
the use, in the classical and modified Vanmarcke approximations to
the first-passage reliability problem, of recently obtained exact
closed-form solutions for the time-variant bandwidth parameter
of the response of classically and nonclassically damped linear
elastic systems. To the writers’ knowledge, this is the first time that
the exact closed-form solutions for the Vanmarcke approximations
are presented for nonstationary random vibration problems. On the
basis of benchmark examples, these analytical approximate
solutions are then compared with accurate simulation results
obtained from the relatively recent ISEE method, allowing a con-
fident appraisal of their absolute and relative accuracy under differ-
ent conditions and especially in nonstationary random vibration. It
is noteworthy that the computational cost of the presented closed-
form analytical approximations of the time-variant failure probabil-
ity is several orders of magnitude smaller than the one associated
with the ISEE simulation method. From the results presented in this
study, it is observed that the two Vanmarcke approximations
provide estimates of the time-variant failure probability for the
first-passage problem that are significantly more accurate than
the simpler Poisson approximation and the analytical upper bound.
On the other hand, the relative accuracy of the classical and modi-
fied Vanmarcke approximations can be evaluated only on a case by
case basis and deserves further studies to be better understood. The
accuracy of the two analytical Vanmarcke approximations of the
time-variant failure probability is sufficient for common engineer-
ing applications. These closed-form approximations of the time-
variant failure probability provide benchmark solutions particularly
useful to validate, in the elastic range, numerical solutions required
for the first-passage problem associated with the nonstationary
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response of nonlinear hysteretic structural systems subjected to sto-
chastic loading. In addition, the small computational cost of these
closed-form analytical approximations renders them very valuable
for practical purposes, e.g., for design-oriented parametric studies.
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