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a b s t r a c t

Earthquake ground motion excitation can induce pounding in adjacent buildings with inadequate sepa-
ration distance. The corresponding risk is particularly relevant in densely inhabited metropolitan areas,
due to the usually limited separation distance between adjacent buildings.

Existing procedures to determine a minimum separation distance needed to avoid seismic pounding are
based on approximations of the peak relative horizontal displacement between adjacent buildings, and are
characterized by unknown safety levels. The present study proposes a probabilistic performance-based
procedure for assessing the mean annual frequency of pounding between adjacent buildings. An efficient
combination of analytical and simulation techniques is defined for the calculation of the pounding risk
under the assumptions of linear elastic behavior for the buildings and of non-stationary Gaussian input
ground motion.

The proposed methodology is illustrated by estimating the probability of pounding between linear sin-
gle-degree-of-freedom systems with deterministic and uncertain properties. Furthermore, the capabilities
of the proposed method are demonstrated by assessing the effectiveness of the use of viscous dampers,
according to different retrofit schemes, in reducing the pounding probability of adjacent buildings mod-
eled as linear elastic multi-degree-of-freedom systems. The results obtained based on the proposed meth-
odology are validated against purely numerical simulation results.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Earthquake ground motion excitation can induce pounding in
adjacent buildings with inadequate separation distance. The corre-
sponding risk is particularly relevant in densely inhabited metro-
politan areas, due to the need of maximizing the land use and
the consequent limited separation distance between adjacent
buildings.

The problem of seismic pounding has been investigated by sev-
eral researchers in the last two decades. A significant number of
early studies focused on the definition of simplified rules, such as
the Double Difference Combination rule, for determining the peak
relative displacement response of adjacent buildings at the potential
pounding locations [1–3]. A critical separation distance was defined
and set equal to the mean peak response quantity, by neglecting the
associated probability of pounding. In the same context, consider-
able research efforts were devoted to assessing the accuracy of the

combination rules recommended in design codes (e.g., the well
known absolute sum and square-root-of-the-sums-squared rules
[4]) in determining the peak relative displacement response (i.e.,
the critical separation distance) of adjacent buildings [5].

More recent studies have adopted a probabilistic approach for
the assessment of the seismic pounding risk. In Lin [6], a method
was proposed to estimate the first two statistical moments of the
random peak relative displacement response between linear elas-
tic structures subjected to stationary base excitation. In Lin and
Weng [7], a numerical simulation approach was suggested to eval-
uate the pounding probability, over a 50-year design lifetime, of
adjacent buildings separated by code-specified critical separation
distances. The latter study considered both the uncertainty affect-
ing the seismic input intensity (by using a proper hazard model)
and the record-to-record variability (by using artificially generated
spectrum-compatible ground acceleration time histories as input
loading). The buildings were modeled as multi-degree-of-freedom
(MDOF) systems with inelastic behavior and deterministic proper-
ties. In Hong et al. [8], a procedure was developed to assess the
fractiles of the critical separation distance between linear elastic
systems with deterministic and uncertain structural properties
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subjected to stationary base excitation. The previous study was
later extended by Wang and Hong [9] to include non-stationary
seismic input.

Despite the numerous studies available in the literature on seis-
mic pounding, to the best of the authors’ knowledge, a reliability-
based methodology for the evaluation of the safety levels associ-
ated with specified critical separation distances is still needed. In
addition, the gradual progress of seismic design codes from a pre-
scriptive to a performance-based design philosophy generates a
significant need for new, advanced, accurate, and computationally
efficient reliability-based methodologies for the assessment and
mitigation of seismic pounding risk.

This paper presents a fully probabilistic methodology for assess-
ing the seismic pounding risk between adjacent buildings. This
methodology is consistent with and can be easily incorporated into
a performance-based earthquake engineering (PBEE) approach,
such as the Pacific Earthquake Engineering Research center (PEER)
framework [10,11]. The presented methodology considers the
uncertainty affecting both the seismic input (i.e., site hazard and
record-to-record variability) and the parameters used to describe
the structural systems of interest (i.e., material properties, geome-
try, damping properties and separation distance). The seismic in-
put is modeled as a non-stationary random process. The seismic
pounding risk is computed from the solution of a first-passage reli-
ability problem. While the performance-based approach proposed
is general, the methodology presented here is specialized to linear
elastic systems subjected to Gaussian loading. Under these
assumptions, approximate analytical solutions and efficient simu-
lation techniques can be used to solve the relevant first-passage
reliability problem. Thus, this methodology is appropriate for
structural systems that remain in their linear elastic behavior
range before pounding (which is a very common condition for
low values of the critical separation distances and, thus, high seis-
mic pounding risk), although it can be extended to account for
nonlinear behavior of the considered structural systems.

2. PBEE framework for seismic pounding risk assessment

The PEER PBEE framework is a general probabilistic methodol-
ogy, based on the total probability theorem, for risk assessment
and design of structures subjected to seismic hazard [10,11]. The
PEER PBEE methodology involves four probabilistic analysis com-
ponents: (1) probabilistic seismic hazard analysis (PSHA), (2) prob-
abilistic seismic demand analysis (PSDA), (3) probabilistic seismic
capacity analysis (PSCA), and (4) probabilistic seismic loss analysis
(PSLA). PSHA provides the probabilistic description of an appropri-
ate ground-motion intensity measure (IM), usually expressed in
terms of mean annual frequency (MAF) of exceedance of a specific
value im, vIM(im). The IM must be selected based on sufficiency,
efficiency, and hazard computability criteria [12]. PSDA provides
the statistical description of structural response parameters of
interest, usually referred to as engineering demand parameters
(EDPs), conditional to the value of the seismic intensity IM. PSCA
consists in computing the probability of exceeding specified phys-
ical limit-states, defined by structure-specific damage measures
(DMs), and conditional to the values of the EDPs. Finally, PSLA
provides the probabilistic description of a decision variable (DV),
which is a measurable attribute of a specific structural perfor-
mance and can be defined in terms of cost/benefit for the users
and/or the society.

The reliability-based procedure developed in this paper consists
in computing the MAF of pounding between two adjacent build-
ings vp. This procedure is a specialization of the first three steps
of the general PEER PBEE framework (i.e., PSLA is out of the scope
of this paper) to the seismic pounding problem. It is noteworthy

that the proposed approach is conceptually very different from
the computation of the critical separation distance, which does
not explicitly provide the probability of pounding associated with
a given separation distance. The computation of the MAF of pound-
ing can be expressed as

vp ¼
Z

edp

Z
im

GDMjEDPðdmjedpÞ � jdGEDPjIMðedpjimÞj � jdv IMðimÞj ð1Þ

in which GDM|EDP(dm|edp) = complementary cumulative distribution
function of variable DM conditional to EDP = edp, and
GEDP|IM(edp|im) = complementary cumulative distribution function
of variable EDP conditional to IM = im, where upper case symbols
indicate random variables and lower case symbols denote specific
values assumed by the corresponding random variable.

The maximum value over time (i.e., for t e [0, tmax], with t = time
and tmax = duration of the seismic event), Urel,max, of the maximum
relative displacement computed over the common height shared
by the adjacent buildings is assumed here as EDP. The probabilistic
distribution of Urel,max reflects the record-to-record variability of
the ground motions expected to occur at the site for a given inten-
sity, as well as the effects of the uncertainty in the parameters used
to describe the structural model. Finally, the pounding event is
assumed as the controlling limit-state in PSCA, by using the follow-
ing limit-state function, g:

g ¼ N� Urel;max ð2Þ

in which N = random variable describing the building separation
distance, and the pounding event corresponds to g 6 0. Thus,
GEDPjIMðepdjimÞ ¼ P½Urel;max P ujIM ¼ im� and GDMjEDPðdmjedpÞ ¼
P½g 6 0jUrel;max ¼ u�. An important intermediate result of the proce-
dure is the convolution of PSCA and PSDA, also called fragility analy-
sis, which yields a fragility curve. Fragility curves describe the
probability Pp|IM of pounding conditional on the seismic intensity, i.e.,

PpjIM ¼
Z

edp
GDMjEDPðdmjedpÞ � dGEDPjIMðedpjimÞ

�� �� ð3Þ

The MAF of pounding, mp, can be used to compute the MAF of
exceeding a specified value of DV, e.g., the MAF of repair cost due
to pounding damage. The computation of the latter quantity re-
quires the definition of a realistic loss model, based on appropriate
structural response models (e.g., dynamic impact between adjacent
systems) and damage models (e.g., damage produced by floor-
to-floor and floor-to-column pounding). Structural response and
damage models involve the definition of other EDPs and DMs,
respectively, in addition to those already employed in this paper
for assessing the pounding risk. Several structural response and
damage models available in the literature could be employed to
define an appropriate loss model [13–16].

In addition, vp can be directly used to determine the pounding
risk, Pp(tL), for a given structure over its design life (tL = design life-
time, e.g., 50 years). Assuming that the occurrence of a pounding
event can be described by a Poisson process and that the buildings
are immediately restored to their original condition after pounding
occurs, Pp(tL) can be easily computed as

PpðtLÞ ¼ 1� e�mp �tL ð4Þ

3. Seismic pounding risk assessment methodology

Fragility analysis is the most computationally challenging com-
ponent of the probabilistic PBEE framework. A simple and general
approach for fragility analysis in seismic pounding assessment is
provided by Monte Carlo simulation [5,7]. For any given value of
IM, Monte Carlo simulation-based fragility analysis requires (1)
the definition of a set of ground motions that are selected from
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an appropriate database of real records or generated from an
appropriate random process, (2) the sampling of the parameters
that define the structural systems and their separation distances,
(3) the numerical simulation of the structural response for each
ground motion time history and each set of structural parameters
and separation distances, and (4) the evaluation of Pp|IM as the ratio
between the number of failures and the number of samples. How-
ever, the computational cost associated with Monte Carlo simula-
tion can be very high and even prohibitive when small failure
probabilities need to be estimated by numerically simulating the
time history response of complex and/or large-scale MDOF
systems.

In this paper, an efficient combination of analytical and simula-
tion techniques is proposed for the calculation of Pp|IM under the
assumptions of linear elastic behavior for the buildings and of
Gaussian input ground motion. The methodology is described first
for linear elastic systems with deterministic structural properties
and separation distance, and then generalized to stochastic linear
systems.

It is noteworthy that, for low values of the building separation
distance n, the buildings are expected to behave elastically before
pounding occurs. The assumption of linear behavior of the build-
ings before pounding becomes less realistic for larger values of n
and may result in an underestimation of the pounding risk, partic-
ularly for buildings with fundamental periods shorter than approx-
imately 1.0 s. This underestimation is due to the fact that, in
general, inelastic displacements are expected to be larger than
those evaluated with elastic models. If the buildings are expected
to yield before pounding, their nonlinear structural behavior must
be accounted for by extending the methodology described in the
remainder of this paper, e.g., by using statistical linearization tech-
niques [17] or subset simulation [18]. This extension is out of the
scope of this paper.

3.1. Linear systems with deterministic structural properties

The computation of the conditional failure probability Pp|IM can
be expressed in the form of a single-barrier first-passage reliability
problem as [5,9]

PpjIM ¼ P max
06t6tmax

½UrelðtÞ�P n

����IM ¼ im
� �

ð5Þ

in which UrelðtÞ ¼ max
06y6h

½UA;yðtÞ � UB;yðtÞ� � UA;hðtÞ � UB;hðtÞ; UA,y(t)
and UB,y(t) = displacement response of the adjacent buildings A
and B at elevation y; h = roof elevation of the shorter building, usu-
ally assumed as the most likely pounding location [1–3,6,7]; and
n = deterministic value of the building separation distance (Fig. 1).

Under the hypotheses of deterministic linear elastic systems
subjected to Gaussian loading processes and of deterministic
threshold, several analytical approximations of Pp|IM exist in the lit-
erature [19–22]. These analytical approximations require comput-
ing the following statistics of the relative displacement process

Urel(t) for a given IM = im: r2
Urel
ðtÞ ¼ variance of Urel(t), r2

_Urel
ðtÞ ¼ var-

iance of the relative velocity process _UrelðtÞ, qUrel
_Urel
ðtÞ ¼ correlation

coefficient between Urel(t) and _UrelðtÞ, and qUrel
ðtÞ ¼ bandwidth

parameter of Urel(t). These statistics can be obtained from the
zero-th, first, and second order spectral characteristics of process
Urel(t) [23–25]. Following the methodology described in Barbato
and Conte [24], a state-space formulation of the equations of mo-
tion for the two buildings is employed to compute exactly and in
closed-form the required spectral characteristics. The approach fol-
lowed here is based on random vibration theory (similar to exist-
ing stochastic techniques for the derivation of analytical fragility
curves [28,29]) and effortlessly accounts for the record-to-record
variability of the seismic input.

The seismic input is modeled as a time-modulated Gaussian
colored noise process. This analytical representation of the seismic
input requires the definition of a power spectral density and of a
time-modulating function [25]. The parameters needed to define
analytically the power spectral density and the time-modulating
function can be calibrated to represent the characteristics of the
seismic input expected at the site [26] or to match a code-specified
response spectrum [27]. For the specific input ground motion pro-
cess considered in this paper, the spectral characteristics of the dis-
placement processes (and of any response process obtained as a
linear combination of the displacement processes) are available
in exact closed-form for single-degree-of-freedom (SDOF) systems
and both classically and non-classically damped MDOF systems
[25]. It is noteworthy that the general framework presented in this
paper can be used in conjunction with any representation of the
earthquake ground motion, e.g., with a set of properly selected
and scaled recorded ground motions [30], as commonly done in
PEER PBEE [10,11]. However, the efficient methodology introduced
here for the pounding probability assessment of linear elastic
systems requires an analytical representation of the earthquake
ground motion through an appropriate random process. In addi-
tion, the IM must be selected so that it can be readily related to
the stochastic description of the seismic input.

The equations of motion for the linear system constituted by
two non-connected adjacent buildings can be expressed as follows:

m � €UðtÞ þ c � _UðtÞ þ k � UðtÞ ¼ p � FðtÞ ð6Þ

in which m ¼ mA 0
0 mB

� �
, c ¼ cA 0

0 cB

� �
, k ¼ kA 0

0 kB

� �
,

U ¼ UA

UB

� �
; mi, ki, ci and Ui = mass matrix, damping matrix,

stiffness matrix, and vector of nodal displacements of building i,
respectively (i = A, B); p = load distribution vector; F(t) = scalar
function describing the time-history of the external loading (input
random process); and a superposed dot denotes differentiation with
respect to time. It is noteworthy that connections between the two
buildings (e.g., damping devices interposed between the buildings
to mitigate seismic pounding risk) can be easily modeled by intro-
ducing the appropriate terms in matrix c. The response process
Urel(t) can be related to the displacement response vector U(t) by
means of a linear operator b, i.e., Urel(t) = b � U(t).

For the sake of clarity, the same earthquake input FðtÞ ¼ �€xgðtÞ
is applied as base excitation to both building A and B, i.e., the ef-
fects of asynchronous ground motion are ignored. This assumption,
in general, can lead to an underestimation of the relative displace-
ment of adjacent structures and of the corresponding pounding
probability. However, for the problem considered in this paper, this
assumption is expected to have negligible effects, since the pound-
ing risk is relevant only when the adjacent buildings are very close.
It is noteworthy that the effects of asynchronous ground motion on
the assessment of the pounding probability can be easily included
in the framework proposed in this paper by using an appropriate

Building B

Building A

A,hU B,hU

y

h

Fig. 1. Geometric description of the pounding problem between adjacent buildings.
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coherency function, e.g., following the approach presented in Hao
and Zhang [31].

The probability of pounding conditional on IM = im corresponds
to the solution of a first-passage reliability problem and is given by
[32]

PpjIM ¼ 1� P½Urelðt ¼ 0Þ < njIM ¼ im�

� exp �
Z tmax

0
hUrel jimðn; sÞ � ds

� �
ð7Þ

in which P[Urel(t = 0) < n|IM = im] = probability that the random pro-
cess Urel(t) is below the threshold n at time t = 0 s, and hurel jimðn; tÞ ¼
time-variant hazard function conditional on IM = im. For systems
with at rest initial conditions, P[Urel(t = 0) < n|IM = im] = 1.

To date, no exact closed-form expressions exist for the time-
variant hazard function hUrel jimðn; tÞ. However, several approximate
solutions are available in the literature, e.g., Poisson’s (P),
hðPÞUrel jimðn; tÞ ¼ mUrel jimðn; tÞ, classical Vanmarcke’s (cVM), hðcVMÞ

Urel jimðn; tÞ,
and modified Vanmarcke’s (mVM), hðmVMÞ

Urel jim ðn; tÞ, approximations
[22,33,34]. These analytical approximations can be readily com-
puted based on the closed-form expressions of the spectral charac-
teristics of process Urel(t), as shown in Barbato and Vasta [25]. In
addition, for linear elastic systems subjected to Gaussian loading,
Pp|IM can be efficiently and accurately estimated by using the
Importance Sampling using Elementary Events (ISEE) method [35].

3.2. Linear systems with uncertain structural properties and
separation distance

In addition to the uncertainty in the seismic input, significant
uncertainty can be found in geometrical, mechanical, and material
properties characterizing the structural systems and their models.
Hereinafter, the uncertainty in geometrical, mechanical, and mate-
rial properties of the structural models, as well as in their separa-
tion distance, N, is referred to as model parameter uncertainty.
Model parameter uncertainty can significantly modify the struc-
tural performance and, thus, must be considered in the assessment
of seismic pounding risk.

In order to include the effects of model parameter uncertainty,
the total probability theorem is employed to compute the condi-
tional probability of pounding as follows:

PpjIM ¼
Z

X
PpjIM;XðxÞ � f ðxÞ � dx ¼ EX½PpjIM;X� ð8Þ

in which X = vector of uncertain model parameters (including the
uncertain separation distance N) with joint probability density
function fX(x), and PpjIM;XðxÞ ¼ probability of pounding conditional
on X and IM.

Monte Carlo simulation, or any variance reduction technique
such as stratified sampling, can be employed to evaluate Pp|IM in
Eq. (8). For example, Latin hypercube sampling can be employed
for its computational efficiency [36]. The samples of X generated
by employing Latin hypercube sampling can be used to define a
set of deterministic linear elastic models with deterministic sepa-
ration distance, for which the conditional probability of pounding
can be computed as in Eq. (7).

4. Application examples

In this section, the proposed methodology is applied to: (1)
compute the pounding risk for SDOF systems with deterministic
model parameters, (2) compute the pounding risk for SDOF sys-
tems with uncertain model parameters, and (3) evaluate the effec-
tiveness of different retrofit solutions using viscous dampers in
reducing the pounding risk for deterministic MDOF models of mul-
tistory buildings.

In all the application examples considered here, the input
ground acceleration is modeled by a time-modulated Gaussian
process. The time-modulating function, I(t), is represented by the
Shinozuka–Sato’s function [37], i.e.,

IðtÞ ¼ c � ðe�b1 �t � e�b2 �tÞ � HðtÞ ð9Þ

in which b1 = 0.045p s�1, b2 = 0.050p s�1, c = 25.812, and H(t) = unit
step function. A duration tmax = 30 s is considered for the seismic
excitation.

The power spectral density of the embedded stationary process
is described by the widely-used Kanai-Tajimi model, as modified
by Clough and Penzien [38], i.e.,

SCPðxÞ ¼ S0 �
x4

g þ 4 � n2
g �x2 �x2

g

½x2
g �x2�2 þ 4 � n2

g �x2 �x2
g

� x4

½x2
f �x2�2 þ 4 � n2

f �x2 �x2
f

ð10Þ

in which S0 = amplitude of the bedrock excitation spectrum,
modeled as a white noise process; xg and ng = fundamental circular
frequency and damping factor of the soil, respectively; and xf and
nf = parameters describing the Clough–Penzien filter. The values of
the parameters employed for all the applications are xg =
12.5 rad/s, ng = 0.6, xf = 2 rad/s, and nf = 0.7. The power spectral
density function in Eq. (10) is shown in Fig. 2a for S0 = 1 m2/s3.

The choice of an appropriate IM for the seismic pounding prob-
lem is a crucial step for the proposed performance-based method-
ology. The spectral acceleration Sa(T1) at the fundamental period of
vibration is often used as the IM for the evaluation of the seismic
response of buildings. In fact, for single buildings with determinis-
tic properties (i.e., deterministic natural period, T1), Sa(T1) has been
found to be a sufficient and highly efficient IM [39]. However, in
the problem considered in this paper, the fundamental periods of
vibration of both buildings contribute significantly to the relative
displacement and, thus, to the probability of pounding. Therefore,
Sa(T1) (in which T1 denotes the fundamental period of one of the
two buildings) is not a sufficient and efficient IM. The efficiency
of Sa(T1) is further reduced when considering modeling uncertain-
ties (i.e., when the natural periods of the structures are uncertain
[40]). It is noteworthy that the proposed formulation has no limi-
tations in terms of the choice of the IM. In this context, a vector-
valued IM based on a combination of the spectral accelerations cor-
responding to the natural periods of the two adjacent buildings ap-
pears to be a potentially highly efficient IM [12,41,42]. However, an
in-depth analysis of the sufficiency and efficiency of different IMs is
beyond the scope of this paper. Therefore, the peak ground acceler-
ation (PGA) is assumed here as the IM for the sake of simplicity. In
order to derive the fragility curves in terms of the selected IM, the
relationship between the parameter S0 of the Kanai-Tajimi spec-
trum and the PGA at the site is assessed empirically. A set of 500
synthetic stationary ground motion records are generated using
the spectral representation method [43] based on the power spec-
tral density function given in Eq. (10) with S0 = 1 m2/s3. Each
ground motion realization is then modulated in time using the
function defined in Eq. (9). The peak ground acceleration corre-
sponding to S0 = 1 m2/s3, PGAS0¼1, is estimated as the mean of the
PGAs of the sampled ground motion time histories. The values of
S0 corresponding to different values of PGA are obtained as follows:

S0 ¼
PGA

PGAS0¼1

� �2

ð11Þ

In this study, the site hazard curve is expressed in the approximate
form used in Cornell et al. [44], i.e.,

v IMðimÞ ¼ P½IM P imj1yr� ¼ k0 � im�k1 ð12Þ

E. Tubaldi et al. / Structural Safety 36-37 (2012) 14–22 17
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in which k0 and k1 = parameters obtained by fitting a straight line
through two known points of the site hazard curve plotted in loga-
rithmic scale. For the applications presented in this paper, the site
hazard curve is taken from Eurocode 8-Part 2 [45], assuming that
PGA = 0.3 g corresponds to a return period of 475 years for the site
of interest. Using k1 = 2.857 [46], the site hazard curve becomes
(see Fig. 2b)

mPGAðpgaÞ ¼ 6:734� 10�5 � pga�2:857 ð13Þ

4.1. Pounding risk for linear SDOF systems with deterministic model
parameters

The first application example consists in the assessment of the
pounding risk between two adjacent buildings modeled as deter-
ministic linear elastic SDOF systems with periods TA and TB and
damping ratios fA = fB = 5%. In order to realistically represent the
behavior of actual building structures, the properties of the two
SDOF systems need to be chosen appropriately. A possible ap-
proach to achieve this objective is the one proposed by Penzien
[3], in which a linear displacement assumption is employed to re-
late the displacement of a MDOF system at the pounding location
to the displacement of a corresponding generalized SDOF system. It
is noted that the results presented here are independent of the
technique that is employed to relate the SDOF and MDOF system
responses. The conditional probability of pounding Pp|IM is
calculated using the approximate analytical hazard functions
hðPÞUrel jimðn; tÞ, hðcVMÞ

Urel jimðn; tÞ, and hðmVMÞ
Urel jim ðn; tÞ, for a deterministic distance

between the buildings n = 0.1 m and for two different combina-
tions of natural periods of the two systems, i.e., (1) TA = 1.0 s and
TB = 0.5 s, referred to as well separated natural periods (Fig. 3a),

and (2) TA = 1.0 s and TB = 0.9 s, referred to as close natural periods
(Fig. 3b). The obtained conditional probabilities are presented in
Fig. 3 as fragility curves and compared with the corresponding re-
sults obtained using the ISEE method [35], which are assumed as
reference solution.

In the case of well separated natural periods for the structures
(Fig. 3a), the fragility curves estimated using the P, cVM, and
mVM approximations are very similar and close to the fragility
curves obtained using the ISEE method. In the case of close natural
periods (Fig. 3b), the fragility curves estimated with the approxi-
mate analytical methods show significant differences, and only
the cVM approximation provides results that are close to the fragil-
ity curves estimated using the ISEE method. The observed result
can be explained by recognizing that the relative displacement
process Urel(t) can be interpreted as a response process of a two-de-
gree-of-freedom system. This multi-modal characteristic of Urel(t)
can significantly affect the accuracy of the different approxima-
tions of the time-variant hazard function hUrel jimðn; tÞ [47]. In the
case of well separated natural periods, the contribution to Urel(t)
of the vibration mode with higher period is significantly larger
than the contribution of the vibration mode with lower period.
By contrast, in the case of close natural periods, both vibration
modes provide a significant contribution to the response process.

Fig. 4 shows the MAF of pounding, vp, as a function of the build-
ing separation distance n (in semi-logarithmic scale) for the cases
of well separated natural periods (Fig. 4a) and of close natural peri-
ods (Fig. 4b), respectively. The estimates of the MAF of pounding
obtained using the analytical approximations (P, cVM, and mVM)
of the hazard function are compared to the corresponding estimate
obtained using the ISEE method. Fig. 5 plots (in semi-logarithmic
scale) the pounding risk for a design lifetime of 50 years, evaluated
according to Eq. (4), for the same two cases of well separated and
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close natural periods. Considerations similar to the ones made for
the fragility curves can be made also for the MAF of pounding and
the 50-year pounding risk, i.e., the analytical approximations pro-
vide very accurate results for the case of well separated natural
periods and less accurate results for the case of close natural peri-
ods, with the exception of the cVM approximation, which is accu-
rate in both cases.

It is observed that the P approximation of the time-variant haz-
ard function always yields conservative results; while the mVM
approximation underestimates the risk computed using the ISEE
method for the case of close natural periods. Similar results have
been documented for the first-passage reliability problem of SDOF
and MDOF systems subjected to time-modulated white and col-
ored noise excitations [33,34].

4.2. Pounding risk for SDOF systems with uncertain model parameters

The effects of model parameter uncertainty on the pounding
probability are investigated in this second application example.
In order to include uncertainty in the stiffness, inertia, and dissipa-
tive properties of the two SDOF systems [8,9], their natural periods
are modeled as independent lognormal random variables with
mean values equal to 1.0 s and 0.5 s, respectively, and coefficients
of variation equal to 0.3, while the damping ratios are modeled as
independent lognormal random variables with mean values equal
to 0.05 and coefficients of variation equal to 0.5. The statistical
description of the random separation distance N is obtained based
on the interstory out-of-plumbness of the columns at each floor of

the two buildings [48]. The influence of the columns’ out-of-
plumbness on the stiffness of the structural systems is neglected.

In this application example, building A is a 10-story building
and building B is a 5-story building, both with a constant interstory
height equal to 3.00 m. The interstory out-of-plumbness H at each
floor of each building are modeled as independent normal random
variables with mean lH = 0.0 rad and standard deviation
rH = 0.0015 rad [48]. Thus, the separation distance N at the roof
level of building B is a normal random variable with mean value
lN equal to the nominal value of the buildings’ distance and stan-
dard deviation rN = 0.0142 m. In order to account for the variabil-
ity of these model parameters, a total of 50 samples of the vector X
is generated using the Latin hypercube sampling technique [36].

Fig. 6a plots the pounding probability conditional to IM = im (in
short, fragility curve) corresponding to (1) deterministic SDOF sys-
tems with deterministic separation distance, (2) SDOF systems with
deterministic separation distance and uncertain periods and damp-
ing ratios, and (3) SDOF systems with uncertain natural periods,
damping ratios, and separation distance. For the sake of clarity, only
the fragility curves obtained using the mVM approximation of the
time-variant hazard function are shown. It is observed that model
parameter uncertainty increases the dispersion of the response of
the two SDOF systems, and thus the corresponding fragility curves,
while the shift of the IM corresponding to 50% probability of pound-
ing is negligible. The uncertainty affecting the separation distance
N has a practically negligible effect on the pounding probability
for the considered values of the separation distance.

Fig. 6b shows the 50-year probability of pounding as a function
of the separation distance, for the same three cases considered in
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Fig. 6a. It is observed that model parameter uncertainty increases
the pounding risk for separation distances higher than 0.06 m. This
phenomenon can be explained considering that, when model
parameter uncertainty is considered and lN > 0.06 m, the fragility
curve is higher for lower IM values (with higher MAF) and lower
for higher IM values (with lower MAF) than when model parameter
uncertainty is neglected (see Fig. 6a). The observed underestima-
tion of the pounding risk due to neglecting model parameter
uncertainty is non-negligible and can be as high as 35% for a large
range of separation distances. This result suggests that the effects
of model parameter uncertainty be included in the assessment of
the pounding risk, particularly when a high degree of uncertainty
affects the model parameters.

4.3. MDOF models of multistory buildings retrofitted by
using viscous dampers

As a third application, the proposed methodology is employed
to assess the risk of pounding between two adjacent multistory
buildings modeled as linear MDOF systems, before and after retro-
fit with viscous dampers. Different retrofit solutions are considered
and their effectiveness in reducing the seismic pounding risk is
compared. The considered buildings are steel moment-resisting
frames with shear-type behavior. The properties of the buildings
are taken from Lin [49]. Building A is an 8-story building with story
stiffness kA = 628,801 kN/m (equal for every story) and floor mass
mA = 454.545 tons (equal for each floor), building B is a four-story
building with story stiffness kB = 470,840 kN/m and floor mass
mB = 454.545 tons. A Rayleigh-type damping matrix cR is used
(see Eq. (6)) to model the inherent buildings’ damping and is built
by considering a damping ratio fR = 2% for the first two vibration
modes of each system. Model parameter uncertainty is not consid-
ered in this application. The fundamental vibration periods of
building A and B are TA = 0.915 s and TB = 0.562 s, respectively.

The following six different retrofit solutions, based on the use of
braces with purely viscous behavior [50], are considered: (1)
braces located at each story of both buildings (retrofit scheme 1),
(2) braces located at the lower four stories of both buildings (retro-
fit scheme 2), (3) braces located at all stories of the short building
only (retrofit scheme 3), (4) braces located at all stories of the tall
building only (retrofit scheme 4), (5) braces located at the lower
four stories of the tall building only (retrofit scheme 5), and (6)
braces located at the first story of the tall building only. The two
buildings before retrofit are shown in Fig. 7a, while the six retrofit
schemes are shown in Fig. 7b. The viscous braces provide an addi-
tional source of damping, modeled by means of a damping matrix
cv. The total damping matrix for the system constituted by the two

buildings is c = cR + cv. The damping coefficient corresponding to
the dampers at each floor of buildings A and B is cd = 10,000 kN s/
m. The systems corresponding to retrofit schemes 2, 5, and 6 are
non-classically damped and their analysis requires the use of the
complex modal analysis technique [25].

Fig. 8a shows three different analytical estimates (P, cVM, and
mVM approximations) of the 50-year probability of pounding be-
tween the two buildings before retrofit. The 50-year probability
of pounding is plotted for different values of the separation dis-
tance. Fig. 8a also reports the 50-year probability of pounding ob-
tained using the ISEE method, which is considered as reference
solution. The analytical estimates provide a very good estimate
of the pounding risk for a wide range of separation distances. In
this particular case, the results obtained using the mVM hazard
function give the best approximation of the ISEE results.

Fig. 8b compares the 50-year probability of pounding for the
buildings before retrofit and after retrofit following the six differ-
ent retrofit solutions considered in this application example. The
results presented in Fig. 8b are obtained using the mVM approxi-
mation of the hazard function.

It is observed that the use of viscous dampers can be very effec-
tive in reducing the risk of pounding between the two buildings. It
is also found that the introduction of viscous braces according to
scheme 2 is a very efficient retrofit solution, since it obtains a sig-
nificant reduction of the pounding risk at a significantly lower ret-
rofit cost when compared with retrofit scheme 1. Furthermore,
retrofit scheme 3 also achieves a good compromise between retro-
fit costs and reduction of pounding risk.

5. Conclusions

This paper presents a fully probabilistic performance-based
methodology for assessment of the seismic pounding risk between
adjacent buildings. This methodology, which is consistent with the
PEER performance-based earthquake engineering framework, is
able to account for all pertinent sources of uncertainty that can
affect the pounding risk, e.g., uncertainty in the seismic input
(i.e., site hazard and record-to-record variability) and in the param-
eters used to describe the structural systems of interest (i.e., mate-
rial properties, geometry, damping properties, and separation
distance).

An efficient combination of analytical and simulation tech-
niques is proposed for the calculation of the pounding risk under
the assumptions of linear elastic behavior for the buildings and
of non-stationary Gaussian input ground motion. The pounding
problem is recast as a first-passage reliability problem, which is
solved analytically by using the spectral characteristics (up to the
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second order) of the non-stationary stochastic process represent-
ing the relative displacement between the buildings. Three differ-
ent analytical approximations of the time-variant hazard function
are considered: (1) the Poisson’s approximation, (2) the classical
Vanmarcke’s approximation, and (3) the modified Vanmarcke’s
approximation. Results obtained by employing the importance
sampling using elementary events method are assumed as refer-
ence solutions to evaluate the absolute and relative accuracy of
the three analytical approximations considered here. The proposed
formulation is very convenient in the case of linear elastic multi-
degree-of-freedom systems with both proportional and non-pro-
portional damping, since the spectral characteristics of the relative
displacement processes can be computed in exact closed form. The
effects of uncertainty in the model parameters are efficiently in-
cluded by means of the total probability theorem and the Latin
hypercube sampling technique.

The proposed methodology is applied to investigate the risk of
pounding between single-degree-of-freedom systems, both with
deterministic and uncertain properties. With reference to this spe-
cific application example, the following observations are made. (1)
The proposed combination of analytical and simulation techniques
provides sufficiently accurate estimates of the pounding risk when
the Vanmarcke’s approximations are used to estimate the time-
variant hazard function. It is noteworthy that, in general, the rela-
tive accuracy of the classical and modified Vanmarcke’s approxi-
mations can be evaluated only on a case-by-case basis. (2) The
accuracy of the analytical approximations of the time-variant haz-
ard function depends on the ratio between the natural periods of
the adjacent buildings. Higher accuracy is reached when the natu-
ral periods of the two buildings are well separated. (3) The Pois-
son’s approximation of the time-variant hazard function yields
always conservative estimates of the risk. (4) Neglecting the effects

of model parameter uncertainty can induce an underestimation of
the pounding risk. Therefore, it is recommended that model
parameter uncertainty, often neglected in previous studies, be con-
sidered in the pounding risk assessment.

In addition, the capabilities of the proposed method are demon-
strated by assessing the effectiveness of the use of viscous damp-
ers, according to different retrofit schemes, in reducing the
pounding probability of adjacent multistory buildings modeled as
linear elastic multi-degree-of-freedom systems. Based on the re-
sults presented, the following considerations are made for the
application example considered in this paper. (1) The analytical
approximations provide very accurate estimates of the pounding
risk, due to the fact that the fundamental periods of the two build-
ings are well separated. (2) The use of viscous dampers can dra-
matically reduce the risk of pounding between the two systems
for any given separation distance. (3) The use of viscous braces in
the lower levels of the shorter building is a very efficient and
cost-effective technique for minimizing the pounding risk.

Based on the results presented in this paper, it is concluded that
the proposed methodology can be efficiently employed (1) for the
assessment of pounding risk of adjacent buildings exhibiting linear
elastic behavior before pounding, (2) for the computation of the
mean annual frequency of pounding between adjacent buildings
in the context of performance-based earthquake engineering, and
(3) for the rational evaluation of the absolute and relative effective-
ness of different retrofit solutions for adjacent building with high
risk of seismic pounding.
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