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Abstract: This paper uses a fully probabilistic approach to investigate the seismic response of multispan continuous bridges with dissipative
piers and a steel–concrete composite (SCC) deck, the motion of which is transversally restrained at the abutments. This bridge typology is
characterized by complex dual load path behavior in the transverse direction, with multiple failure modes involving both the deck and the
piers. Proper assessment of the seismic vulnerability of these structural systems must rigorously take into account all pertinent sources of
uncertainty, including uncertainties in both the seismic input (record-to-record variability) and the properties defining the structural model
(model parameters). Model parameter uncertainty affects not only the structural capacity, but also the seismic response of a structural system.
However, most of the procedures for seismic vulnerability assessment focus on the variability of the response resulting solely from seismic
input uncertainty. These procedures either neglect model parameter uncertainty effects or incorporate these effects only in a simplified way.
A computationally expensive but rigorous procedure is introduced in this work to include the effects of model parameter uncertainty on the
seismic response and vulnerability assessment of SCC bridges with dual load path. Monte Carlo simulation with Latin hypercube sampling,
in conjunction with probabilistic moment–curvature analysis, is used to build probabilistic finite-element models of the bridges under study.
Extended incremental dynamic analysis is used to propagate all pertinent sources of uncertainty to the seismic demand. The proposed pro-
cedure is then applied to the assessment of three benchmark bridges exhibiting different seismic behavior and dominant failure modes.
Comparison of the response variability induced by seismic input uncertainty and the response variability induced by model parameter un-
certainty highlights the importance of accounting for the latter when evaluating the safety of the typology of bridges considered in this study.
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Introduction

Steel–concrete composite (SCC) bridges are a very common, eco-
nomical, and efficient type of highway bridge, especially in the
range of short and medium span lengths (Collings 2005). These
bridges are usually characterized by a continuous SCC deck resting
on reinforced concrete piers (Itani et al. 2003), the latter providing
the main seismic energy dissipation source. The seismic perfor-
mance of this bridge typology during recent earthquakes has been
extensively discussed in many studies (Astaneh-Asl et al. 1994;

Kawashima 2010). Numerical investigation of their seismic re-
sponse has also been carried out, as in Padgett and DesRoches
(2008). These studies have highlighted the likelihood of damage
to the various components that lie in the seismic load paths, includ-
ing the piers, the deck, and the bearings.

To reduce deck bending and avoid expensive bidirectional
joints, a rigid connection can be established between the deck
and the abutments by means of fixed bearings, steel-plate stoppers,
or special links restraining the transverse displacements [European
Committee for Standardization (ECS) 2005]. In this situation, “dual
load path” transverse behavior is observed (Calvi 2004; Tubaldi
et al. 2010), with two different mechanisms resisting the
earthquake-induced inertia forces. These two mechanisms are
(1) the inelastic load path constituted by the piers, designed to
yield and dissipate the input energy; and (2) the elastic load path
formed by the deck and the abutments, designed to remain elastic
according to capacity design principles [ECS 2005; Federation
Internationale du Beton (FIB) 2007]. A recent parametric study
(Tubaldi et al. 2010) analyzed changes in the seismic response of
multispan continuous SCC bridges with dual load path caused by a
variation in the relative deck-to-pier stiffness ratio. The influence of
relative stiffness on global response was investigated by varying the
ratio H=D between the height H and the cross-section diameter D
of the piers. Only uncertainty in seismic input was considered by
subjecting the bridges to different sets of ground motions charac-
terized by variable intensity and frequency content. The following

1Post Doctoral Researcher, Dipartimento di Architettura Costruzione e
Strutture, Università Politecnica delle Marche, Via Brecce Bianche 60131,
Ancona, Italy. E-mail: etubaldi@libero.it

2Assistant Professor, Dept. of Civil & Environmental Engineering,
Louisiana State Univ. and A&M College, 3531 Patrick F. Taylor Hall,
Nicholson Extension, Baton Rouge, LA 70803, USA (corresponding
author). E-mail: mbarbato@lsu.edu

3Professor, Scuola di Architettura e Design, Univ. of Camerino, Viale
della Rimembranza 63100, Ascoli Piceno (AP), Italy. E-mail: andrea
.dallasta@unicam.it

Note. This manuscript was submitted on April 2, 2010; approved on
June 15, 2011; published online on June 17, 2011. Discussion period open
until August 1, 2012; separate discussions must be submitted for individual
papers. This paper is part of the Journal of Structural Engineering,
Vol. 138, No. 3, March 1, 2012. ©ASCE, ISSN 0733-9445/2012/3-
363–374/$25.00.

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MARCH 2012 / 363

Downloaded 29 Mar 2012 to 130.39.99.178. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org

http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000456
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000456
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000456
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000456


results were obtained: (1) the elastic load path assumes an increas-
ing importance relative to the inelastic one for increasing values of
H=D; (2) different dispersions characterize the strength and defor-
mation demand at the different resisting components; (3) multiple
failure modes, involving different components, must be considered
when analyzing these bridges; and (4) failure can be reached as a
result of deck yielding or exceedance of the curvature capacity of
the piers, depending on the ratio H=D.

The difference observed in the failure modes and in the statistics
of the monitored engineering demand parameters (EDPs), for the
various geometric configurations (i.e., H=D ratios) analyzed in
Tubaldi et al. (2010), suggested that uncertainty affecting input
ground motion and model parameters can play an important role
in structural safety and deserves further investigation. To investi-
gate these effects, a fully probabilistic procedure must be defined
and employed to propagate these uncertainties through the response
and vulnerability assessment of the various geometric configura-
tions analyzed.

Previous studies by other researchers have recognized the
importance of model parameter uncertainty to structural performance
and have developed appropriate methodologies for evaluating the
effects of model parameter uncertainty on seismic response (Hwang
and Jaw 1990; Dymiotis et al. 1999; Padgett and DesRoches 2007;
Dolsek 2009; Vamvatsikos and Fragiadakis 2010). However, these
methodologies have been specifically developed for structural typol-
ogies other than that considered in this study. Most of these studies
focused on the performance of building frames, whereas Padgett and
DesRoches (2007) investigated the performance of existing bridges
retrofitted according to various techniques.

The main goal of the present study is to investigate the seismic
response and fragility of SCC bridges with dual load path by con-
sidering uncertainty related to both ground motion and model
parameters. In addition, this study aims to identify and quantify
the role of the different sources of uncertainty in the variability
of the seismic response and vulnerability of SCC bridges with dual
load path.

The uncertainties considered in the study are divided into two
categories on the basis of their different numerical treatment:
ground motion uncertainty (or simply randomness, R), and model
parameter uncertainty (or simply uncertainty, U). Randomness R is
the uncertainty of aleatoric nature related to seismic input (e.g., as a
result of frequency content, duration, and record-to-record variabil-
ity of ground motion) that can affect a given structure (Katsanos
et al. 2010). Uncertainty U is a combination of aleatoric and epi-
stemic uncertainty (Padgett and DesRoches 2007), and includes
the intrinsic variability of geometric and material parameters defin-
ing the system (e.g., material constitutive properties, cross-section
dimensions), modeling assumptions, and lack of knowledge
(e.g., plastic hinge length). These sources of variability affect both
the demand on and the capacity of the bridge components.

In this paper, a rigorous methodology to evaluate the effects of
model parameter uncertainty is proposed and specifically devel-
oped for the probabilistic problem considered. This methodology
innovatively combines existing techniques, previously developed
by other researchers for different types of structures, and represents
a novel application of these techniques to bridge engineering.
It uses a computationally efficient Latin hypercube sampling to
reproduce the variability of model parameter uncertainty. It is note-
worthy that the proposed methodology is able to account for multi-
ple limit states, similar to the technique proposed in Padgett and
DesRoches (2007). However, in contrast to the work of Padgett
and DesRoches (2007), the newly proposed methodology uses
a direct simulation approach and, thus, does not require the intro-
duction of any assumption (e.g., lognormality) on the statistical

distribution of the seismic demand. Moreover, as opposed to tradi-
tional approaches, the proposed procedure is capable of accounting
for the dependence of both demand and capacity on uncertainty U
and, thus, of simulating their joint probability distribution. This
innovative feature is accomplished through the use of probabilistic
moment–curvature analysis of the most critical resisting compo-
nents, which is employed to generate a probabilistic model of the
capacity of the structural components and to define the probabilistic
finite-element (FE) model. The use of concentrated plasticity mod-
els, instead of a fiber-based model, provides a good compromise
between accuracy, complexity, and speed of computation, the last
being required by the large number of nonlinear FE analyses
involved.

The methodology is applied to the seismic response and fragility
assessment of a set of multispan continuous SCC bridges with dual
load path having different geometric configurations (i.e., H=D
ratios of the piers). These bridges are characterized by a different
response and fragility of the system and of the components in-
volved in the two load paths. The sensitivity of the response with
respect to model parameters is studied to highlight the param-
eters that most significantly influence the seismic behavior of the
bridges. Furthermore, the effects of U and R on the variability of
the demand are evaluated jointly and separately with the aim of
investigating the suitability of simplified approaches for reducing
the computational cost of the analyses.

Methodology

This paper employs the extended incremental dynamic analysis
(EIDA) method (Dolsek 2009; Vamvatsikos and Fragiadakis 2010)
for propagating uncertainties from model parameters and seismic
ground motion to the EDPs used to monitor the system response.
EIDA couples ordinary incremental dynamic analysis (IDA)
(Vamvatsikos and Cornell 2002) with a simulation technique used
to generate a probabilistic FE model of the structural system under
study. Randomness is modeled through the selection of a suffi-
ciently large number, Ngm, of recorded ground accelerations appro-
priately chosen from the Internet database of the Pacific Earthquake
Engineering Research Center (PEER 2006). Uncertainty is de-
scribed by modeling a wide range of model parameters as random
variables (RVs), assuming full correlation across the entire struc-
ture. This approximation is adopted, instead of a more rigorous ran-
dom field approach [such as that suggested by Lee and Mosalam
(2004)], to (1) reduce the computational cost associated with the
potentially large number of RVs obtained from a proper discretiza-
tion of the corresponding random fields; (2) simplify the physical
interpretation of the probabilistic response results; and (3) avoid
difficulties caused by the lack of data associated with the correla-
tion lengths of the pertinent random fields. It is noted here that the
assumption of full correlation within the entire structure for each
random model parameter corresponds to assuming that the corre-
lation length for the corresponding random field is larger than
the dimension of the structural system considered. Although this
assumption is not exact, it is known that the dispersion of the
response parameters of a stochastic FE model is higher when the
spatial variability of the model parameters is neglected (Lee and
Mosalam 2004). Thus, the results obtained in this paper in terms
of the dispersion of the EDPs can be considered as upper bounds of
their actual dispersions.

The probability distributions and correlations between couples
of model parameters adopted in this study are based on data
reported in the literature, when available, or on engineering
judgment, when sufficient data are not available. It is noteworthy
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that a previous study (Barbato et al. 2010) showed that the corre-
lation between couples of model parameters can affect, sometimes
even significantly, the dispersion of the response parameters, par-
ticularly for highly nonlinear structural behavior. Thus, there is a
clear need for more accurate and reliable estimates of the correla-
tion coefficients between couples of model parameters. However,
the accurate determination of these correlation coefficients is out-
side the scope of this paper. The joint probability density function
(for all random parameters considered) required to generate the
samples is obtained by using the Nataf model (Ditlevsen and
Madsen 1996). A set of Nsim samples of nonlinear FE structural
models are obtained employing the Latin hypercube sampling
(LHS) technique, as described in Iman and Conover (1982), where
an efficient algorithm is also used to induce the target correlation
between the variables. This algorithm is based on an iterative pro-
cedure that minimizes the scatter between the target and the sample
correlation obtained for the generated sets of parameters.

The elastic and postelastic behavior of the structure is charac-
terized on the basis of the moment–curvature (M–φ) response of
the critical cross sections (CALTRANS 2006). Here, Monte Carlo
simulation with LHS (Imam and Conover 1982) is coupled with
M–φ analysis to build probabilistic M–φ curves (Tabsh 1996;
Lee and Mosalam 2006) for the cross sections that most influence
the bridge’s transverse structural response. These cross sections are
located at the base of the piers (which are expected to yield and may
fail by reaching the ultimate curvature limit) and at the midspan of
the deck (which is the deck cross-section most prone to yielding)
(Tubaldi et al. 2010). Probabilistic M–φ analysis is used to deter-
mine the statistical properties of stiffness and capacity of these
structural components (i.e., deck and piers).

To separately identify the effects of randomness and uncertainty,
both EIDA and IDA were performed. Multirecord IDA propagates
the randomness-only effects to the EDPs. It entails generating Ngm
IDA curves based on a deterministic structural model correspond-
ing to the mean/median values of the model parameters (referred
to as the basic structural model). Multirecord EIDA involves the
generation of Ngm · Nsim IDA curves reflecting the effects of both
randomness and uncertainty. Both EIDA and IDA require the
selection of an appropriate (i.e., efficient and sufficient) intensity
measure (IM) (Shome et al. 1998) for scaling the ground motions
to different intensity levels. IM selection is an important task in the
probabilistic response and vulnerability analysis of structural sys-
tems subjected to seismic hazards. Efficiency of the IM ensures that
good confidence in the results is achieved with a small number of
analyses. Sufficiency of the IM ensures that the response is condi-
tionally independent of the magnitude and source-to-site distance
of the input ground motions. The spectral acceleration Sað�T ; ξÞ at
the fundamental period �T of the structure for a given damping ratio
ξ has been recognized to be both efficient and sufficient for first
mode-dominated systems. Thus, Sað�T ; ξÞ is often preferred over
other less efficient IMs, for example, peak ground acceleration
(Shome et al. 1998). However, the choice of Sað�T ; ξÞ as IM for
uncertain structures (i.e., when uncertainty influences the value
of the fundamental period of the structure) is not as straightforward
as for deterministic structures. In this study, the Sað�T ; 2%Þ corre-
sponding to the fundamental period of the basic structural model is
assumed as the IM in both IDA and EIDA, consistent with the
ground motion selection and modification (GMSM) method pre-
sented in Shome et al. (1998). It is noteworthy that the GMSM
method used in this paper presents some limitations (PEER
2009; Katsanos et al. 2010). However, an in-depth analysis of these
limitations is out of the scope of this paper.

The EDPs chosen in this study are the curvature demand at the
base of the piers and the transverse curvature demand at the deck

midspan. These EDPs are related to the two more important
collapse modalities for SCC bridges with dual load path. Once
EIDA and IDA curves are generated, the EDP statistics are esti-
mated for different values of the IM. The influence of uncertainty
on the probabilistic response of the bridge is evaluated based on the
comparison between the median values and the dispersions of the
EDPs according to EIDA and IDA for the discrete values of the IM.
In particular, the response statistics considered are the 50th, 16th,
and 84th fractiles of the EDPs. A quantitative measure of EDP
dispersion is provided by the parameter β, defined as one-half
of the natural logarithm of the ratio between the 84th and 16th frac-
tiles of each monitored EDP at each IM value. It is noteworthy that,
under the assumption of lognormality of the statistical distribution
of the EDPs for a given value of IM, the parameter β coincides with
the estimate of the lognormal standard deviation of the EDP of
interest. The median values of the EDPs resulting from EIDA are
compared with the corresponding values obtained using IDA to
evaluate the bias in the median response resulting from model
parameter uncertainty. The dispersion of the EDPs resulting from
both randomness and uncertainty, βRU (from EIDA); randomness
only, βR (from IDA); and uncertainty only, βU , are evaluated and
compared to assess the influence of uncertainty on the response
variability. The dispersion βU is computed as the average of the
dispersions resulting from FE model variability obtained for each
of the Ngm ground motions considered (Dolsek 2009).

The influence of uncertainty on the fragility of the bridges in-
vestigated, assuming as limit states the exceedance of the curvature
capacity of piers and deck. Failure in shear of the piers and abut-
ment failure are ignored, assuming that a capacity design approach
was used and that the probability of failure associated with these
failure conditions is negligible. The statistical model of the capacity
of piers and deck is obtained based on probabilistic M–φ analysis,
which is employed to propagate the uncertainty from model param-
eters to cross-section capacity. In this study, the component and
system fragility curves are obtained through a numerical approach.
It is noteworthy that the proposed methodology can be easily ex-
tended to include damage states other than those considered here.
For example, the probabilistic moment–curvature curves can be
employed to estimate the statistical distribution of the curvature
corresponding to cover concrete cracking or spalling.

Application Examples

Description of the Basic Structural Models

The bridges considered in this paper have a total length of 130 m
divided into three spans of lengths L1 ¼ 40 m, L2 ¼ 50 m, and
L3 ¼ 40 m (Fig. 1). The superstructure is designed according to
the specifications given in Eurocode 4 (ECS 2000) for the nonseis-
mic load combinations (Dezi and Formica 2006). It consists of a
12-m-wide reinforced concrete slab, which can host two traffic
lanes, and two steel girders positioned symmetrically with respect
to the deck centerline at a distance of 6 m between their centerlines.
Fig. 2(a) shows a typical cross section of the deck. The steel girders

Fig. 1. Bridge longitudinal profile (slenderness ratio H=D ¼ 5)
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are shown in Fig. 2(b), where the thicknesses of the flanges and
web are provided for the five different girder cross sections
(i.e., S1 through S5) used along the deck axis. The deck slab is
haunched, and its thickness varies between 250 and 350 mm.
The longitudinal reinforcement area is equal to 2% of the slab area
at the supports (hogging regions) and 1% at midspans (sagging re-
gions). The nominal distributed dead load due to self-weight of the
structural and nonstructural elements permanently connected to the
bridge is 138 kN=m (Dezi and Formica 2006). The deck is trans-
versely fixed at the abutments. The reinforced concrete piers have a
nominal circular cross section of diameter D ¼ 1:8 m. Three differ-
ent values of the slenderness are considered; that is, H=D ¼ 3, 5,
and 9, corresponding to height H ¼ 5:4 m, 9.0 m, and 16.2 m.
These values, selected on the basis of the parametric analysis per-
formed in Tubaldi et al. (2010), describe three different types of
seismic response. For the short piers, structural failure is due to
excessive curvature in the piers. For the tall piers, structural failure
is due to the deck yielding. The intermediate case is characterized
by a “balanced failure.” The piers have a constant longitudinal
reinforcement steel ratio equal to 1%. Transverse reinforcement
with a volumetric ratio ρw ¼ 0:5% is provided in the hinge regions,
with the goal of confining the concrete and preventing premature
shear failure. Class C30/37 and C35/45 concrete is used for the
piers and superstructure slab, respectively. The reinforcement bars
are made of grade B450C steel, and the deck girders are made of
grade S355 steel (ECS 2000). The bridge is assumed to rest on stiff
soil, and the supports at the piers and abutments are modeled as
rigid. Soil–structure interaction is not modeled, as it has negligible
influence on the bridge’s transverse seismic response for the bridge
geometry and soil type considered (Tubaldi et al. 2010).

Dynamic nonlinear FE analyses of the bridges are performed
using OpenSees (McKenna et al. 2006). The piers are modeled
using the frame-with-hinges element developed by Scott and
Fenves (2006), which is based on fiber-section integration over a
specified hinge length, Lp, located at the pier base. The deck is
modeled using linear elastic three-dimensional Timoshenko frame
elements. Effective stiffness values are assigned to the deck and the
elastic portion of the piers to account for concrete cracking.

Ground Motion Uncertainty

A set of Ngm ¼ 18 ground motion records is selected from the
PEER (2006) database. These records refer to sites characterized
by shear wave velocity Vs higher than 800 m=s (stiff soil), with
magnitudes in the range between 5.5 and 7.5 and source-to-site
distance between 25 and 75 km. In Fig. 3(a) are plotted the
pseudo-acceleration spectra of the selected ground motions (gray
thin lines) and the corresponding mean spectrum (black thick line).
In Fig. 3(b), the dispersion β of the normalized spectra is plotted the
period of vibration T for the three models analyzed. It is observed
that β equals zero for the fundamental period of vibrations �T in the
transverse direction and assumes relatively high values (almost up
to 1) for other periods.

Model Parameter Uncertainty

The sources of uncertainty considered in this study are: (1) geom-
etry, (2) material properties, (3) mass and dead loads, and (4) other
parameters used to numerically model the structural behavior at the
component and structure levels. Table 1 summarizes the model
parameters’ statistical information.

(a) (b)

Fig. 2. Bridge deck cross section properties: (a) typical deck transverse cross section; (b) girder cross section geometry

(a) (b)

Fig. 3. Seismic ground motion uncertainty: (a) pseudo-acceleration spectra of the selected earthquake records and corresponding mean spectrum;
(b) dispersion of the normalized spectra for the different models
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Regarding geometry, the section diameter, Dp, and the concrete
cover, c, are modeled as RVs. The uncertainty of the latter is mod-
eled by assigning a normal statistical distribution to the difference
between the real in situ value, cr , and the nominal (design) value,
cd. The statistical distributions of cd � cr and Dp are based on the
Joint Committee on Structural Safety (JCSS) recommendations
(JCSS 2000).

With respect to material properties, proper statistical distribu-
tions are assigned to the material parameters needed to define
the constitutive models adopted (i.e., the constitutive parameters).
Confined (the piers’ core) and unconfined (the piers’ cover and
deck slab) concrete materials are both modeled via a Kent–
Scott–Park (Kent and Park 1971) stress–strain model. The constit-
utive parameters assumed as uncertain for the unconfined concrete
of the piers’ cover (class 30/37) and the deck slab (class 40/45) are:
(1) peak strength, f c;cover and f c;deck; (2) strain at peak strength,
εc;cover and εc;deck; and (3) strain at rupture, εcu;cover and εcu;deck.
The residual stress for strain larger than εcu;cover is assumed deter-
ministically to be zero. The statistical distribution of the peak
strength is taken from Barlett and McGregor (1996), and the dis-
tribution of the ultimate strain is taken from Barbato et al. (2010)
and is characterized by a coefficient of variation (COV) of 20%.
The effect of confinement on the concrete core in the piers’ plastic
hinge zones is based on Mander’s model (Mander et al. 1988). The
constitutive parameters modeled as RVs for the confined concrete
are: (1) peak strength, f c;core; (2) strain at peak strength, εc;core;
(3) strength at rupture, f cu;core; and (4) strain at rupture, εcu;core.
The COV of εcu;core is based on the work of Kappos et al. (1999).

The Menegotto–Pinto model (Menegotto and Pinto 1973) is
used to characterize the reinforcement steel behavior. The follow-
ing constitutive parameters are assumed as RVs: (1) yield stress,
f sy;reinf ; (2) elastic modulus, Es;reinf ; (3) ultimate stress, f su;reinf ;
and (4) ultimate strain εsu;reinf . An additional RV is introduced to
account for longitudinal bar buckling. According to Berry (2006),

longitudinal bar buckling takes place when the absolute value of
the compressive strain of the steel reinforcement is larger than the
limit value

εsu;bb ¼ χ1 þ χ2 · ρeff ð1Þ

where ρeff ¼ ρs · f ys=f c = effective confinement ratio, with ρs =
transverse reinforcement ratio, f ys = yield stress of transverse
reinforcement, and f c = concrete compressive strength; and χ1 ¼
0:045 and χ2 ¼ 0:25 are constants calibrated on experimental re-
sults. The mean value of εsu;bb for the case examined here is 0.062,
and the COV is 25.4%. The statistical description of the parameters
defining the girder steel stress–strain relation is obtained from the
literature (JCSS 2000; Da Silva et al. 2009). The elastic modulus of
the girder steel, Es;girder, has a mean value of 209,000 MPa and a
COVof 6%. The influence of plate thickness on the definition of the
yield stress of the girder steel, f ys;girder, is not considered here. How-
ever, it is noteworthy that the complete girder steel stress–strain
relation is needed for the probabilistic M–φ analysis.

The structure self-weight is characterized by moderate uncer-
tainty because of variations in material densities, member sizes,
and overlay thickness (Nowak and Szerszen 1998). The following
components of dead loads are considered: (1) weight of factory-
made elements (steel, precast concrete members); (2) weight of
cast-in-place concrete members; (3) weight of the wearing surface
(asphalt); and (4) miscellaneous weights (e.g., pipes, luminaries).
Dead loads are modeled by two normal RVs corresponding to loads
acting on the superstructure, Wsup, and on the substructure, W sub.

The sources of uncertainty characterizing the structural behavior
include: (1) modal damping ratio, ξ, and (2) plastic hinge length,
Lp, in the piers. The modal damping ratio is assumed to follow a
lognormal distribution with mean equal to 0.02 and a COVof 30%.
The modal damping ratio is used to build a Rayleigh-type FE
damping matrix (McKenna et al. 2006), based on the periods of

Table 1. Statistical Description of Model Parameters

RV Description Distribution Mean COV [%]

Dp [m] Section diameter Normal 1.8 0.55

cd � cr [mm] Pier cover Normal 0 (σ ¼ 0:01)

εc;core Pier core concrete properties Lognormal 0.004 20

f c;core [MPa] Lognormal 45.75 20

εcu;core Lognormal 0.0096 35

f cu;core [MPa] Lognormal 38.8 20

εc;cover Pier cover concrete properties Lognormal 0.002 20

f c;cover [MPa] Lognormal 38 18.6

εcu;cover Lognormal 0.0035 20

εc;deck Deck slab concrete properties Lognormal 0.002 20

f c;deck [MPa] Lognormal 43 18.6

εc;deck Lognormal 0.0035 20

f ys;reinf [MPa] Pier and deck slab reinforcement steel properties Lognormal 517.5 5.8

Es;reinf [MPa] Lognormal 201,000 3.3

f su;reinf [MPa] Lognormal 648 6.2

εsu;reinf Lognormal 0.09 8

εsu;bb Lognormal 0.062 25.4

f ys;girder [MPa] Deck girder steel properties Normal 419.38 5

Es;girder [MPa] Normal 209,000 6

W sup [kN=m] Superstructure weight Normal 143.3 8

W sub [kN=m] Substructure weight Normal 66.8 7

ξ Global damping ratio Lognormal 0.02 30

Lp [m] Plastic hinge length Lognormal 1.283 20
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vibration of the two modes with the highest participating mass in the
transverse direction. The variability of these periods caused by un-
certainty is taken into account by performing modal analysis on the
sample models. The plastic hinge length, Lp, has a lognormal distri-
bution, with the mean value obtained following Eurocode 8 (ECS
2005) and a COV of 20% (Lupoi et al. 2003; Lessloss-Risk 2007).

In this study, the correlation coefficients ρ between couples of
parameters describing the confined and unconfined concrete are as-
sumed as follows: ρ ¼ 0:8 for (1) f c;core and f cu;core, (2) εc;core and
εcu;core, (3) εc;cover and εcu;cover, (4) f c;core and f c;cover, (5) εc;core and
εc;cover, (6) εcu;core and εcu;cover, and (7) εc;deck and εcu;deck; ρ ¼ 0:64
for (1) f cu;core and f c;cover, (2) εc;core and εcu;cover, and (3) εcu;core and
εc;cover; and ρ ¼ 0:0 for all other pairs of parameters (Barbato et al.
2010). The correlation coefficients between the reinforcement steel
parameters are ρ ¼ 0:85 for f ys;reinf and f su;reinf , ρ ¼ �0:5 for
f ys;reinf and εsu;reinf , and ρ ¼ �0:55 for f su;reinf and εsu;reinf (JCSS
2000). A correlation coefficient ρ ¼ 0:5 between Dp and cd � cr
is assumed based on engineering judgment. Constitutive parame-
ters from different materials are assumed to be uncorrelated.

In addition to the variables listed in Table 1, the effective
stiffness and curvature capacity of piers and deck are modeled as
RVs. Their statistical distributions are based on probabilistic M–φ
analysis.

Probabilistic Structural Finite-Element Model

Nsim ¼ 50 samples of N ¼ 24 model parameters are generated
using the LHS technique and the joint probability distribution of
the model parameters obtained through the Nataf model. Nsim is
chosen to ensure a good match between target and sample statistical
distributions and correlation matrix. It is observed that Nsim used
here is higher than the value N suggested in Dolsek (2009). A FE
model of each bridge under study is built for each generated sample
of model parameters. Probabilistic M–φ analysis of the deck mid-
span section and the piers’ base sections is performed based on
the assumed joint probability distribution of the model parameters.
Table 2 provides the probabilistic M–φ analysis results in terms of
the statistics of the parameters describing the behavior of the cross
sections of interest.

The probabilistic M–φ curves for the piers’ base cross sections
are determined for a constant value of the axial force equal to the
mean value of the axial force induced by the permanent loads acting
on the bridge corresponding to H=D ¼ 5. This assumption is
deemed appropriate in this study because the changes in the axial
force during the seismic action have a negligible influence on the
cross section behavior of the structural system analyzed (Tubaldi
et al. 2010), when only the transverse component of the seismic
input is considered. However, it is worth mentioning that this
assumption may not be valid in other cases where the vertical com-
ponent of seismic input significantly affects the piers’ seismic
response. The probabilistic M–φ analysis for the piers’ base cross

sections provides the statistics for the yield and ultimate values of
the curvature and moment. The yield point ðMy;p;φy;pÞ corresponds
to the yielding of the longitudinal bars. The ultimate conditions
ðMu;p;φu;pÞ are attained either when the confined concrete fails
or when steel reinforcement reaches the limit tensile strain or
the bucking strain. For each sample of model parameters, an effec-
tive stiffness, EIeff;p, is obtained as the ratio between My;p and φy;p.
In addition to the model parameters listed in Table 1, the Nsim
values of EIeff;p obtained from the probabilistic M–φ analyses
are employed to define the elastic portion of the beam-with-hinges
elements of the FE models used in the time-history analyses. The
corresponding Nsim values of φu;p are used to define the capacity of
the piers in the vulnerability assessment. It is observed that φu;p is
(1) highly correlated (ρ > 0:8) with core (εcu;core) and cover
(εcu;cover) concrete ultimate deformations; (2) moderately correlated
(0:6 < ρ < 0:8) with core (εc;core) and cover (εc;cover) concrete peak
deformations; and (3) lowly correlated (ρ < 0:35) with strength-
related parameters of the concrete materials (i.e., f c;core, f c;cover,
f cu;core). It is also found that EIeff;p is (1) highly correlated with
f c;core; (2) moderately correlated with f c;cover and f cu;core; and
(3) inversely correlated with εc;core (ρ ¼ �0:53) and
εc;cover (ρ ¼ �0:43).

The probabilistic M–φ analysis for the midspan cross section of
the central span provides the statistics for the transverse effective
stiffness, EIeff;d, and the curvature capacity of the superstructure,
φy;d. According to a previous parametric study (Tubaldi et al.
2010), failure of the superstructure is most likely to be reached at
the midspan of the longest span. The values of EIeff;d and φy;d of
other deck cross sections are assumed to follow the same distribu-
tion as that identified for the midspan section. The value of EIeff;d,
which accounts for slab cracking induced by the transverse seismic
forces, is defined as the ratio of yield moment, My;d, to yield cur-
vature, φy;d, determined via probabilistic M–φ analysis. The yield-
ing condition is defined by Eurocode 8 (ECS 2005). It is observed
that EIeff;d is highly correlated with f c;deck and Es;girder, whereas φy;d
is highly positively correlated with f ys;reinf and slightly negatively
correlated with f c;deck and Es;reinf .

Statistical Analysis of the Structural Response

In this section, the statistics of the EDPs obtained from EIDAs
(accounting for both randomness and uncertainty) and IDAs (ac-
counting only for randomness) are illustrated and compared to gain
insight into the contribution (jointly and separately) of randomness
and uncertainty to the variability of EDPs. In this application, the FE
time-history analyses (49500 for EIDA, 990 for IDA) were per-
formed using parallel computation on a computer cluster comprising
104 central processing units (Tubaldi et al. 2010). For the three
bridges considered, Fig. 4 plots the 16th, 50th, and 84th fractile
curves of the piers’ curvature [Figs. 4(a), 4(c), and 4(e)] and the
deck’s midspan transverse curvature [Figs. 4(b), 4(d), and 4(f)]
for a given IM, obtained from both IDAs (R) and EIDAs (RU). The
response of the models corresponding to H=D ¼ 3 and H=D ¼ 5 is
significantly nonlinear and results in the piers experiencing large in-
elastic deformations. The deck curvature demand is most important
in the models corresponding toH=D ¼ 5 andH=D ¼ 9. The median
curvature demand evaluated for the basic structural models, which
reflects randomness effects only (R), is very close to the median
curvature demand estimated including model parameter uncertainty
effects (RU) (i.e., the median seismic response of the bridges con-
sidered is almost independent of uncertainty U).

The relative importance of the various sources of uncertainty
can be studied by comparing the dispersion βRU caused by both

Table 2. Probabilistic Moment–Curvature Analysis Results

RV Description mean COV [%]

φy;p [1=m] Pier yield curvature 0.0023 7.72

My;p [kN-m] Pier yield moment 11,304 4.73

φu;p [1=m] Pier ultimate curvature 0.02617 37.8

Mu;p [kN-m] Pier ultimate moment 15,351 5.27

EIeff;p [kN-m2] Pier effective stiffness 4:91Eþ 06 8.53

φy;d [1=m] Deck yield curvature 0.00039 7.96

My;d [kN-m] Deck yield moment 206,000 7.13

EIeff;d [kN-m2] Deck effective stiffness 6:09E þ 08 5.66
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randomness R and uncertainty U with the dispersion βR caused by
ground motion uncertainty only and the dispersion βU caused
by uncertainty only. Fig. 5 shows the dispersion measures for the
piers’ and deck’s curvature demand as functions of the IM, in
which H=D ¼ 3, 5, and 9. It is observed from Fig. 5 that, for
all EDPs considered, the dispersion measure βU is only slightly
influenced by IM values and by bridge global behavior
(i.e., H=D ratio). The dispersion βU of the piers’ curvature demand
attains a maximum value of 0.35 for low IM values, whereas it
remains almost constant and equal to about 0.23 for a wide range
of IM values, for all H=D values considered. Dispersion βU of the
deck’s curvature demand assumes smaller values, in the range
0.10–0.15 for a wide range of IM values, in all models considered.

Dispersion βR related to ground motion randomness generally
increases as IM increases, for all EDPs considered. Dispersion βR

of the piers’ curvature demand is higher than that of the deck’s
curvature demand, for all IM values considered. The values of βR

for both EPDs are significantly higher for H=D ¼ 3 and H=D ¼ 5
than for H=D ¼ 9. This is a consequence of the high efficiency

of the IM used here in the case of slender piers, which exhibit
an almost elastic response up to high IM values.

Evaluation of the dispersion βRU for any EDP involves perform-
ing a significantly large number of FE simulations and, thus, is
computationally expensive. Therefore, for practical applications,
it is of interest to develop an approximate technique for estimating
βRU at lower computational cost. On the basis of the observation
that βU is almost constant for different values of IM, an approxi-
mate estimate of the dispersion βRU , referred to as βSRSS, is sug-
gested here. This approximate expression is defined as the square
root of sum of squares of βR and the constant asymptotic value, �βU ,
of the dispersion βU ; that is, βSRSS ¼ ðβ2

R þ �β2
UÞ1=2.

Fig. 5 compares βSRSS with βRU , for both piers’ curvature
demand [Figs. 5(a), 5(c), and 5(e)] and deck’s curvature demand
(Figs. 5(b), 5(d), and 5(f)]. The difference between βSRSS and βRU

for all EDPs investigated is very small, particularly for high IM
values. Thus, a satisfactory estimation of βRU can be obtained
through βSRSS by (1) performing multirecord IDAs using the ba-
sic structural model (i.e., by computing βR), and (2) evaluating

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Curvature demand versus seismic intensity IM: (a) piers’ curvature demand φp for piers’ slenderness ratio H=D ¼ 3; (b) deck’s midspan
transverse curvature demand φd for H=D ¼ 3; (c) φp for H=D ¼ 5; (d) φd for H=D ¼ 5; (e) φp for H=D ¼ 9; (f) φd for H=D ¼ 9
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�βU through Monte Carlo analysis for only a single IM value
(e.g., the IM value dominating the hazard of the site). Further
reduction of computational cost, although not investigated in
the present study, could be achieved by estimating �βU through
less computationally demanding FE analyses, for example, prob-
abilistic pushover analysis (Vamvatsikos and Fragiadakis 2010;
Barbato et al. 2010).

To determine which parameters most influence the response of
SCC bridges with dual load path, Spearman rank correlation coef-
ficients, ρinp-out, between model parameters and EDPs (i.e., curva-
ture demand at the piers’ bases, φp, and at the deck midspan
section, φd) are evaluated, and their dependence on IM is analyzed.
These coefficients (Saltelli et al. 2000) are nonparametric measures
of statistical dependence between two variables and indicate the
extent to which one variable tends to increase as the other variable
increases. Therefore, they provide an indirect measure of the re-
sponse sensitivity with respect to the model parameters. Because
of space constraints, only selected results for the case H=D ¼ 5
are shown in Fig. 6. It is observed that φp presents a significant

inverse correlation with the plastic hinge length, Lp, for high IM
values. In fact, φp increases for decreasing Lp because of localiza-
tion effects. An inverse correlation is also observed between φp

and the damping coefficient ratio ξ, and between φd and ξ. This

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Dispersion β of curvature demand versus seismic intensity IM: (a) piers’ curvature dispersion βφp
for piers’ slenderness ratio H=D ¼ 3;

(b) deck’s midspan curvature dispersion βφd
for H=D ¼ 3; (c) βφp

for H=D ¼ 5; (d) βφd
for H=D ¼ 5; (e) βφp

for H=D ¼ 9; and (f) βφd
for H=D ¼ 9

Fig. 6. Correlation coefficients ρinp-out between input variables and
EDPs for slenderness ratio H=D ¼ 5
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correlation decreases after the piers’ yielding because the hysteretic
dissipation at the plastic hinges becomes larger than the energy dis-
sipation resulting from viscous damping. The correlation coeffi-
cients between the EDPs and the other input uncertainties are
smaller (in absolute value) than 0.3 for all IM values considered.
Similar results are observed also for the cases corresponding to
H=D ¼ 3 and H=D ¼ 9. For H=D ¼ 3, a positive correlation
ðρinp-out ≈ 0:5Þ is also observed between deck mass and φd. As ex-
pected, for H=D ¼ 9, φp is positively correlated with strain param-
eters εc;core, εcu;core, εc;cover, and εcu;cover, and negatively correlated
with the strength parameters f c;core, f cu;core, and f c;cover, for IM values
smaller than the value corresponding to the yielding of the piers.

Statistical Analysis of the Structural Fragility

This study presents the fragility curves for SCC bridges with dual
load path characterized by different H=D values. Fragility curves
represent the probability that a specified limit state or failure con-
dition is exceeded, conditional on the value of the IM. They are

used here to identify the most probable failure mechanisms occur-
ring in the different bridge configurations considered, and to
characterize the probabilistic behavior at collapse. The failure con-
ditions considered are flexural failure at the base of the piers
(φp ≥ φu;p) and yielding at the deck midspan (φd ≥ φy;d). The ap-
proach followed in this study accounts explicitly for the correlation
between structural demand and capacity through the use of prob-
abilistic M–φ analysis to define both the probabilistic FE model
and capacity of the structure.

Fig. 7 plots the fragility curves corresponding to each of the two
component limit states [Figs. 7(a), 7(c), and 7(e))] and to the global
system failure [Figs. 7(b), 7(d), and 7(f)] for the different bridge
configurations (H=D ¼ 3, 5, and 9). Fig. 7 also compares results
obtained from IDAs (dashed lines denoted as R) and from EIDAs
(solid lines denoted as RU). For H=D ¼ 3, the piers are the most
fragile component, and the probability of deck yielding, PF;d, is
significantly smaller than the probability of the piers’ flexural fail-
ure, PF;p, at every IM value considered. For H=D ¼ 9, the opposite
behavior is observed, with PF;d significantly larger than PF;p. Thus,
for slender piers, the dissipation capacity of the piers cannot be

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Component (left) and system (right) fragility curves: (a) fragility curve relative to flexural failure of piers PF;p and deck’s midspan PF;d for
slenderness ratio H=D ¼ 3; (b) system fragility curve PF for H=D ¼ 3; (c) PF;p and PF;d for H=D ¼ 5; (d) PF for H=D ¼ 5; (e) PF;p and PF;d

for H=D ¼ 9; (f) PF for H=D ¼ 9
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completely exploited because of deck yielding. For H=D ¼ 5, the
probabilities of failure associated with the two component limit
states are similar in magnitude, leading to a “balanced failure”
of both components at every value of IM. It is observed that
uncertainty has a small influence on the component fragilities.
The effect of uncertainty is a small increase in the fragility of each
component, except for H=D ¼ 9 and large IM values.

The system fragility curves in Figs. 7(b), 7(d), and 7(f) are
obtained by accounting rigorously (through direct simulation) for
the correlation between different failure modes. In general, model
parameter uncertainty produces two effects on the system fragility
curve: (1) an increase in the dispersion of the demand and, thus, a
flattening of the fragility curves; and (2) a shift in the median value
of the fragility (Liel et al. 2009). For H=D ¼ 3 and 5, the values of
Pf conditioned on IM obtained from EIDAs (i.e., including both
randomness and uncertainty in evaluation of EDPs) are slightly
higher than the values obtained from IDAs (i.e., including only ran-
domness in evaluation of EDPs), which is consistent with results
reported in other studies (Vamvatsikos and Fragiadakis 2010). For
H=D ¼ 9, the median value shift is negligible, and the fragility dis-
persion’s increase is dominant. Thus, the fragility curve accounting
for both randomness and uncertainty is flatter than the fragility
curve accounting only for randomness. Assuming that the system
fragility follows a lognormal distribution, the ratio of the lognormal
standard deviation accounting for and disregarding uncertainty is
about 1.25 in the case of slender piers. Thus, the effects of model
parameter uncertainty on the bridges’ seismic vulnerability are very
significant.

In Fig. 8, the system fragility curve accounting for the exact
correlation between failure modes for the bridge with H=D ¼ 5
(i.e., with balanced failure) is compared with the system fragility
curves obtained by approximate combination of the component fra-
gilities by assuming full correlation or independence between the
failure modes. It is observed that the correlation between the two
considered failure modes is significant, and that the fragility curve
obtained from direct simulation is contained and is almost equidis-
tant from the two approximate fragility curves. ForH=D ¼ 3 and 9,
the correlation between the considered failure modes, although
present, has negligible effects on system fragility, as these bridges
are characterized by a dominant failure mode. This observation can
be used to reduce the computational cost of the vulnerability assess-
ment procedure. In fact, for structures characterized by a dominant
failure mode, the correlation between different failure modes can be
ignored with negligible effects on the accuracy of the system failure
probability estimate.

Conclusions

This paper investigates the seismic response and vulnerability of
SCC bridges exhibiting dual load path. A fully probabilistic ap-
proach is proposed to account for both the seismic input uncertainty
resulting from the record-to-record variability and the uncertainty
affecting model parameters, such as geometric dimensions,
material properties, mass, gravity loads, and dissipative properties.

The proposed methodology combines the LHS technique with a
probabilistic moment–curvature analysis to build a lumped plastic-
ity probabilistic FE model of SCC bridges with dual load path.
This methodology allows for the building of FE models that are
sufficiently accurate for real-world engineering applications, while
containing the overall computational cost of the nonlinear FE time-
history analysis. The aforementioned feature is crucial to ensure the
feasibility of the proposed methodology, as accurate and reliable
probabilistic response and vulnerability results usually require a
significantly large number of nonlinear FE time-history analyses.
The propagation of the uncertainty from the seismic input and
model parameters to the seismic response is accomplished by
means of EIDA, which is innovatively employed to perform seis-
mic fragility analysis of bridge structures.

The proposed methodology is applied to a set of three-span con-
tinuous SCC bridges with transverse restraints at the abutments to
evaluate the effects of model parameter uncertainty on seismic re-
sponse and vulnerability, and to highlight critical problems in the
design and assessment of SCC bridges with dual load path. Three
different stiffness ratios between deck and piers (represented by the
ratio H=D between the piers’ height H and the piers’ diameter D)
are considered to examine the different seismic behavior and failure
modes usually exhibited by these structures. Based on the results of
the study performed in this paper, the following observations are
made for SCC bridges with dual load path: (1) The effects on struc-
tural response variability of seismic ground motion uncertainty are
significantly larger than the effects of model parameter uncertainty
forH=D ¼ 3 andH=D ¼ 5 and smaller forH=D ¼ 9. (2) Explicitly
considering the model parameter uncertainty increases the disper-
sion of the simulated seismic response, as measured by the param-
eter β, defined as one-half of the logarithm of the ratio between the
84th and 16th percentiles of the EDP of interest. The dispersion
caused by the model parameter uncertainty only, βU , assumes
not negligible values, which depend on the different EDPs con-
sidered. By contrast, this dispersion is almost independent of the
values of the IM and of the bridge behavior (described by the ratio
H=D). The dispersion βU assumes larger values for the piers’ cur-
vature demand than for the deck’s curvature demand. (3) The seis-
mic response is very sensitive to the piers’ plastic hinge length.
Furthermore, for low values of IM, the values of the monitored
EDPs are negatively correlated with structural damping. (4) The
effects of model parameter uncertainty on system fragility are small
but not negligible. (5) The correlation between different failure
modes is significant only for the case in which a balanced failure
is attained (i.e., H=D ¼ 5 for the application example considered
in this paper), whereas it is negligible in cases characterized by a
dominant failure mode (i.e., H=D ¼ 3 and 9).

The proposed methodology provides a rigorous tool to evaluate
the effects of model parameter uncertainty on seismic response and
fragility of various structural systems. In fact, although the results
presented in this study are limited to SCC bridges with dual load
path, this rigorous methodology can be readily applied to different
bridge and structural typologies. Parametric studies similar to that
presented here can provide important information on the relative
importance of different sources of uncertainty for a variety of struc-
tures. This methodology can also provide benchmark results

Fig. 8. Comparison of different estimates of the system fragility curve
for slenderness ratio H=D ¼ 5
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needed to develop more efficient computational tools, which can
be used to estimate the effects of model parameter uncertainty on
the seismic response and fragility of a wide range of structural
systems.

On the basis of the results obtained using the presented rigorous
procedure, a simplified procedure is proposed to estimate the
dispersion of the monitored EDPs including explicitly the effects
of model parameter uncertainty. This simplified procedure com-
bines classic IDA with Monte Carlo analysis performed for only
one value of the seismic intensity. It is shown that, for the bench-
mark problems considered, the simplified procedure provides suf-
ficiently accurate results at a fraction of the computational cost of
the rigorous procedure.
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