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Abstract: The classical first-passage reliability problem for linear elastic single-degree-of-freedom (SDOF) oscillators subjected to sta-
tionary and nonstationary Gaussian excitations is explored. Several analytical approximations are available in the literature for this problem:
the Poisson, classical Vanmarcke, and modified Vanmarcke approximations. These analytical approximations are widely used because of
their simplicity and their lower computational cost compared with simulation techniques. However, little is known about their accuracy in
estimating the time-variant first-passage failure probability (FPFP) for varying oscillator properties, failure thresholds, and types of loading.
In this paper, a new analytical approximation of the FPFP for linear SDOF systems is proposed by modifying the classical Vanmarcke hazard
function. This new approximation is verified by comparing its failure probability estimates with the results obtained using existing analytical
approximations and the importance sampling using elementary events method for a wide range of oscillator properties, threshold levels,
and types of input excitations. It is shown that the newly proposed analytical approximation of the hazard function yields a significantly
more accurate estimate of the FPFP compared with the Poisson, classical Vanmarcke, and modified Vanmarcke approximations.
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Introduction

Dynamic engineering systems are characterized by both significant
uncertainty in their properties and randomness in their loading
environment. Stochastic dynamics is a well-developed and chal-
lenging research subject that continues to attract notable interest
across many engineering areas. A classical result sought in stochas-
tic dynamics is the failure probability for the first-passage reliabil-
ity problem, referred to as the first-passage failure probability
(FPFP). The FPFP is the probability that a given response quantity
of an engineering system subjected to a dynamic stochastic loading
outcrosses a specified threshold within a given exposure time.

Many analytical and numerical studies have been devoted to the
computation of the FPFP (Rice 1944, 1945; Crandall 1970; Corotis
et al. 1972; Vanmarcke 1975; Beck 2008). However, to date, no
exact closed-form solution of the FPFP is available even for
the simplest case, i.e., a single-degree-of-freedom (SDOF) linear

oscillator subjected to Gaussian white noise (WN) excitation with
a deterministic failure threshold (Crandall 1970; Naess 1990;
Barbato and Conte 2011).

Among the numerical methods used to compute the FPFP, the
Monte Carlo simulation is the most general and robust, although
it is also computationally expensive (or even prohibitive) for low
probability events. Efficient simulation-based methods are avail-
able for general nonlinear problems and/or non-Gaussian excita-
tions, such as the average conditional exceedance rate method
(Naess and Gaidai 2009; Naess et al. 2010) and the subset simu-
lation method (Au and Beck 2001b; Ching et al. 2005a, b). For
linear elastic systems subjected to Gaussian random loading, the
importance sampling using elementary events (ISEE) method
has been proven to be an extremely efficient simulation method
for computing the FPFP (Au and Beck 2001a).

Among the various analytical approximations proposed to
estimate the FPFP, the Poisson (P) approximation (Rice 1944,
1945), the classical Vanmarcke (cVM) approximation, and the
modified Vanmarcke (mVM) approximation (Corotis et al. 1972;
Vanmarcke 1975) are the most widely used. Although these
analytical approximations generally provide a good compromise
between accuracy and computational effort, their use also presents
some deficiencies. For instance, it has been shown that, in the case
of stationary processes, the P approximation provides very conser-
vative estimates of the FPFP for low failure thresholds and narrow-
band processes, whereas the cVM and mVM approximations are
characterized by inconsistent levels of accuracy for different struc-
tural systems and failure thresholds (Corotis et al. 1972; Vanmarcke
1975). In addition, very little information is available on the accu-
racy of these analytical approximations in the case of nonstationary
processes (Barbato and Conte 2011). In fact, both the cVM and the
mVM approximations require computing the so-called bandwidth
parameter of the response process of interest. However, only

1Graduate Research Assistant, Dept. of Civil and Environmental
Engineering, Louisiana State Univ. and A&M College, 2400 Patrick F.
Taylor Hall, Nicholson Extension, Baton Rouge, LA 70803. E-mail:
sghazi1@lsu.edu

2Assistant Professor, Dept. of Civil and Environmental Engineering,
Louisiana State Univ. and A&M College, 3418H Patrick F. Taylor Hall,
Nicholson Extension, Baton Rouge, LA 70803 (corresponding author).
E-mail: mbarbato@lsu.edu

3Postdoctoral Researcher, Dipt. di Architettura Costruzione e Strutture,
Univ. Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
E-mail: etubaldi@libero.it

Note. This manuscript was submitted on June 28, 2011; approved on
December 6, 2011; published online on December 8, 2011. Discussion per-
iod open until November 1, 2012; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Engineering
Mechanics, Vol. 138, No. 6, June 1, 2012. ©ASCE, ISSN 0733-9399/
2012/6-695–706/$25.00.

JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2012 / 695

Downloaded 05 Jun 2012 to 130.39.98.232. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000365
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000365
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000365
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000365


recently has an appropriate definition of the time-variant bandwidth
parameter of a nonstationary process been given based on the
concept of nongeometric spectral characteristics (Di Paola 1985;
Michaelov et al. 1999). Currently, the exact closed form of the
time-variant bandwidth parameter is available for the displacement
response processes of linear SDOF systems. It is also available for
displacement response processes (and for any response quantity
linearly related to the displacement responses) of classically and
nonclassically damped multi-degree-of-freedom systems subjected
to Gaussian WN excitation from at-rest initial conditions (Barbato
and Conte 2008) and time-modulated nonwhite noise excitation
(Barbato and Vasta 2010). These exact solutions have been used
to (1) compute the cVM and mVM approximations of the time-
variant FPFP for different linear structural systems subjected to
different types of loading, and (2) evaluate the absolute and relative
accuracy of these analytical approximations compared with the
corresponding ISEE results (Barbato and Conte 2011). It was found
that the cVM and mVM approximations are, in general, more
accurate than the simpler P approximation. However, the relative
accuracy of the cVM and mVM approximations can be evaluated
only on a case-by-case basis.

This paper aims to (1) investigate the absolute and relative
accuracy of existing analytical approximations (i.e., P, cVM, and
mVM approximation) of the time-variant FPFP for linear SDOF
systems subjected to stationary and/or nonstationary Gaussian
excitations modeled as separable nonstationary processes (i.e.,
stochastic processes defined as the product of a deterministic time
modulating function and a stationary process), and (2) derive an
improved analytical approximate solution for the time-variant
FPFP. The first aim is achieved by evaluating, via an extensive para-
metric study, the accuracy of the considered analytical estimates of
the time-variant FPFP for a wide range of SDOF oscillator proper-
ties (i.e., natural periods and damping ratios), failure threshold
levels, and seismic input models. This evaluation is based on
the comparison of the analytical results with the corresponding sim-
ulation results obtained using the ISEE method, which are consid-
ered as the reference solution. The second goal is achieved by
proposing a new analytical approximation of the time-variant FPFP
for linear SDOF systems subjected to stationary and/or nonstation-
ary Gaussian excitations from at-rest initial conditions. The accu-
racy in estimating the time-variant FPFP of this new analytical
approximation is also examined in detail.

Existing Analytical Approximations of the FPFP

The time-variant FPFP, Pf ;jXj, corresponding to the outcrossing of a
failure threshold level, xlim, by the absolute value of the random
process XðtÞ (symmetric double-barrier problem) from at-rest
initial conditions, is commonly expressed as

Pf ;jXjðxlim; tÞ ¼ 1� exp

�
�
Z

t

0
hjXjðxlim; τÞ · dτ

�
ð1Þ

where t = time; and hjXj = time-variant hazard function for the sym-
metric double-barrier problem. In this paper, the process XðtÞ de-
notes the displacement response of a structural system subjected to
a stationary and/or nonstationary input excitation. To the best of the
writers’ knowledge, no exact analytical solution is available for hjXj
to date. However, several analytical approximations of hjXj are
available in the literature. The P, cVM, and mVM approximations
are considered and briefly reviewed subsequently.

The P approximation assumes that the number of outcrossing
events is described by a Poisson process (i.e., outcrossing events

are independent). Thus, the time-variant hazard function is assumed
to be equal to the mean outcrossing rate function of process XðtÞ,
υjXjðxlim; tÞ, i.e.

hP;jXjðxlim; tÞ ¼ υjXjðxlim; tÞ ¼ E

�
dNðtÞ
dt

�
ð2Þ

where NðtÞ = number of outcrossing events in the time interval
½0; t� and E½…� = expected value operator. The mean outcrossing
rate υjXjðxlim; tÞ is known in exact closed form, which is derived by
using Rice’s formula (Rice 1944, 1945; Lutes and Sarkani 2004).
Whereas the P approximation is asymptotically exact for infinite
threshold values, its accuracy for threshold levels of practical
significance critically depends on the bandwidth of the process
(Vanmarcke 1975). In particular, the FPFP is usually overestimated
for narrowband processes and low threshold levels, whereas it can
be underestimated for wideband processes (Crandall et al. 1966).

The cVM approximation takes into account the effects of the
bandwidth of the process, qXðtÞ [i.e., it considers the fraction of
time that the envelope process spends above or below the failure
threshold level and that the outcrossings of the envelope process are
not always associated with one or more outcrossings of the actual
process (Corotis et al. 1972; Vanmarcke 1975)]. The former con-
sideration is more useful for low failure threshold levels, whereas
the latter becomes more important for high failure threshold levels.
The cVM approximation assumes the following analytical expres-
sion for the time-variant hazard function (Vanmarcke 1975):

hcVM;jXjðxlim; tÞ ¼ υjXjðxlim; tÞ

·
1� exp

�� ffiffiffiffiffiffiffiffi
π∕2

p
· qXðtÞ · ½xlim∕σXðtÞ�

�
1� exp

�� 1
2 · ½xlim∕σXðtÞ�2

� ð3Þ

where σXðtÞ = time-variant standard deviation of process XðtÞ.
The mVM approximation heuristically accounts for super-

clumping effects (Corotis et al. 1972; Vanmarcke 1975) by intro-
ducing an exponent equal to 1.2 for the time-variant bandwidth
parameter in the approximate hazard function equation; i.e.,

hmVM;jXjðxlim; tÞ ¼ υjXjðxlim; tÞ

·
1� exp

�� ffiffiffiffiffiffiffiffi
π∕2

p
· ½qXðtÞ�1:2 · ½xlim∕σXðtÞ�

�
1� exp

�� 1
2 · ½xlim∕σXðtÞ�2

�
ð4Þ

The P, cVM, and mVM hazard functions for the single-barrier
first-passage problem are obtained from Eqs. (2)–(4), respectively,
by substituting xlim with xþlim = threshold for the single-barrier prob-
lem, by substituting υjXjðxlim; tÞ with υXðxþlim; tÞ = mean upcrossing
rate of xþlim by process XðtÞ, and by substituting

ffiffiffiffiffiffiffiffi
π∕2

p
with

ffiffiffiffiffiffi
2π

p
.

New Analytical Approximation of the FPFP for
Linear SDOF Systems

A new analytical hazard function for the displacement response
XðtÞ of a linear SDOF system is proposed to obtain improved
estimates of Pf ðtÞ compared with those obtained using the P, cVM,
and mVM approximations. First, a new hazard function is derived
for the case of linear SDOF systems subjected to WN excitation
from at-rest initial conditions. Then, appropriate corrections are
derived to account for time modulation and nonwhite spectra of
the input loading.

696 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2012

Downloaded 05 Jun 2012 to 130.39.98.232. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



Hazard Function for Linear SDOF Systems Subjected
to WN Excitation from At-Rest Initial Conditions

The time-variant FPFP for linear SDOF systems subjected to
WN excitation from at-rest initial conditions (i.e., with the unit step
time-modulating function) was investigated in Barbato and Conte
(2011). It was found that the relative accuracy of the cVM and
mVM approximations varies with the damping ratio, exposure
time, and threshold level. In addition, for several cases it was noted
that the ISEE results shift progressively away from the cVM to
the mVM approximation results as time elapses. This observation
suggests that a better approximation of the FPFP could be achieved
by (1) considering a time-dependent exponent of the time-variant
bandwidth parameter that increases with time until it reaches a
stationary value, and (2) multiplying the mean outcrossing rate
by a time-dependent factor (with values larger than or equal to 1)
that decreases with time until it reaches a stationary value
equal to 1.

On the basis of these observed trends, a new hazard function for
the double-barrier first-passage problem is proposed as follows:

hNew;jXjðxlim; tÞ ¼ υjXjðxlim; tÞ · exp½C2ðξ; ζ; tÞ�

·
1� exp

�� ffiffiffiffiffiffiffiffi
π∕2

p
· ½qXðtÞ�C1ðξ;ζ;tÞ · ½xlim∕σXðtÞ�

�
1� exp

�� 1
2 · ½xlim∕σXðtÞ�2

�
ð5Þ

in which

C1ðξ; ζ; tÞ ¼ C1;∞ðξ; ζÞ · exp
n
�
h
qXðtÞ � qðWNÞ

X;∞
io

ð6Þ

C2ðξ; ζ; tÞ ¼ C2;∞ðξ; ζÞ ·
h
qXðtÞ � qðWNÞ

X;∞
i

ð7Þ

where ξ = damping ratio; ζ ¼ xlim∕σ
ðWNÞ
X;∞ ¼ xlim∕σX;max = normal-

ized failure threshold level; σðWNÞ
X;∞ = stationary value of the standard

deviation of process XðtÞ when the input process is a WN time
modulated by a unit step function; σX;max ¼ maxt≥0½σXðtÞ�;
qðWNÞ
X;∞ = stationary value of the time-variant bandwidth parameter

of process XðtÞ when the input process is a WN time modulated by
a unit step function (Barbato and Conte 2008); and C1;∞ðξ; ζÞ and
C2;∞ðξ; ζÞ = stationary values of the time-variant functions
C1ðξ; ζ; tÞ and C2ðξ; ζ; tÞ, respectively. The hazard function for
the single-barrier first-passage problem is obtained via the same
substitutions described previously for the P, cVM, and mVM
approximations.

The time-dependent exponential term in Eq. (6),

expf�½qXðtÞ � qðWNÞ
X;∞ �g, is introduced to account for the time

dependence of the exponent of the time-variant bandwidth
parameter (Barbato and Conte 2008) because it always assumes
positive values smaller than 1 and increases with time until it
reaches a stationary value equal to 1. The stationary part
C1;∞ðξ; ζÞ of function C1ðξ; ζ; tÞ accounts for the dependency
on the damping ratio and the normalized failure threshold of the
superclumping effects identified in Corotis et al. (1972) and
Vanmarcke (1975). The time-dependent term in Eq. (7) reflects
the effect of the sudden application of the input loading correspond-
ing to a unit step time-modulating function. It is noteworthy that
the time-variant FPFP for a linear SDOF system subjected to
WN excitation can be expressed as a function of normalized time
t0 ¼ t∕T (i.e., the time t divided by the natural period T of the
SDOF system; see the appendix). Thus, the stationary values
C1;∞ðξ; ζÞ and C2;∞ðξ; ζÞ are independent of T .

A closed-form expression for C1ðξ; ζ; tÞ and C2ðξ; ζ; tÞ is ob-
tained by deriving an analytical expression for the stationary values
C1;∞ðξ; ζÞ and C2;∞ðξ; ζÞ as follows. First, the ISEE method is re-
peatedly applied to evaluate the time history of the time-variant
FPFP, Pf ðtÞ, for different combinations of the damping ratio
(�ξ ¼ 0:01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50) and of
the normalized failure threshold level (�ζ ¼ 1:5, 2, 3, 4, and 5).
Closely spaced values of t0 are considered from t0 ¼ 0 to a value
of t0 sufficiently large to reach stationarity. For each of these
8 × 5 ¼ 40 time histories, the values of �C1;∞ð�ξ; �ζÞ and
�C2;∞ð�ξ; �ζÞ are obtained through least-squares fitting using the
MATLAB function “lsqcurvefit” (MathWorks 1997). These values
correspond to the best fit between the analytical estimates of Pf ðt0Þ,
computed using Eqs. (1) and (5), and the ISEE results. The ISEE
results used to estimate �C1;∞ð�ξ; �ζÞ and �C2;∞ð�ξ; �ζÞ are obtained by
imposing a very low target coefficient of variation (COV = 0.001),
to ensure high accuracy in the estimates of Pf ðt0Þ and to minimize
the sensitivity of �C1;∞ð�ξ; �ζÞ and �C2;∞ð�ξ; �ζÞ to the variability of the
simulation results. Fig. 1 compares the values of Pf ðt0Þ computed
using (1) the ISEE method; (2) the P, cVM, and mVM approxima-
tions of the hazard function; and (3) the newly proposed analytical
approximation of the hazard function given in Eq. (5) and based on
the fitted values of �C1;∞ð�ξ; �ζÞ and �C2;∞ð�ξ; �ζÞ, for the case corre-
sponding to T ¼ 0:1 s, ξ ¼ 0:2, and ζ ¼ 3:0. The hazard function
built using the optimized values �C1;∞ð�ξ; �ζÞ and �C2;∞ð�ξ; �ζÞ is able
to reproduce the simulation results with extremely high accuracy
over the entire time history of Pf ðt0Þ. Similar results are obtained
for all combinations of �ξ and �ζ considered here, thus validating the
analytical expressions assumed for the time-variant hazard function
in Eqs. (5)–(7).

Two polynomial surfaces C1;∞ðξ; ζÞ and C2;∞ðξ; ζÞ (expressed
as functions of the damping ratio ξ and of the normalized
threshold ζ) are then fitted to the values �C1;∞ð�ξ; �ζÞ and
�C2;∞ð�ξ; �ζÞ obtained via least-squares fitting by using the “sftool”
MATLAB toolbox (MathWorks 1997). This fitting is done to
extend the proposed expression of the hazard function to values
of ξ and ζ for which simulation results are not available. The order
of the polynomials is kept as small as possible (equal to 5 for the
damping ratio and 4 for the normalized threshold) to balance the
contrasting requirements of accuracy and simplicity. The following
polynomial representations are suggested for C1;∞ðξ; ζÞ and
C2;∞ðξ; ζÞ:

Ci;∞ðξ; ζÞ ¼
X5
l¼0

X4
m¼0

ðPðiÞ
lm · ξl · ζmÞ; i ¼ 1; 2;

0:01 ≤ ξ ≤ 0:50; 1:5 ≤ ζ ≤ 5:0

ð8Þ

0 2 4 6 8
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 t
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f (
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 C
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P
f,mVM

P
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Fig. 1. Computation of �C1;∞ and �C2;∞: SDOF system subjected to WN
base excitation from at-rest initial conditions (�ξ ¼ 0:2, �ζ ¼ 3)
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in which the coefficients PðiÞ
lm (i ¼ 1; 2; l ¼ 0; 1; 2; 3; 4; 5; and

m ¼ 0; 1; 2; 3; 4) obtained from the surface fitting are given in
Table 1. For values of the damping ratio ξ and of the normalized
threshold ζ that are outside the domain in which the two surfaces
previously described are fitted, Eq. (8) is computed using the values
of ξ and ζ along the boundaries of the fitting domain [e.g., for
damping ratios smaller than 0.01, Eq. (8) is computed using
ξ ¼ 0:01]. Figs. 2 and 3 plot the isocurves of C1;∞ðξ; ζÞ and
C2;∞ðξ; ζÞ, respectively, for discrete values of ζ as functions of
ξ. These polynomial surfaces provide an accurate fit to the values
�C1;∞ð�ξ; �ζÞ and �C2;∞ð�ξ; �ζÞ obtained through least-squares fitting.

Modifications of the Hazard Function Needed to
Account for Time Modulation and Nonwhite Spectra

When the input process is time modulated [with the time-
modulating function AðtÞ] and/or characterized by a nonwhite spec-
trum (i.e., the excitation is a colored noise), the results obtained
considering SDOF systems subjected to WN excitation from at-rest
initial conditions still can be used by modifying Eqs. (6) and (7)
through the following corrections:

Correction 1. The functions in Eqs. (6) and (7) are computed
using an equivalent damping ratio, ~ξ, and an equivalent time-variant
normalized threshold level, ~ζðtÞ, i.e.,

C1ð~ξ; ~ζðtÞ; tÞ ¼ C1;∞ð~ξ; ~ζðtÞÞ · expfminf�½qXðtÞ � qX;∞�; 0gg
ð9Þ

C2ð~ξ; ~ζðtÞ; tÞ ¼ C2;∞ð~ξ; ~ζðtÞÞ · maxf½qXðtÞ � qX;∞�; 0g ð10Þ

in which qX;∞ = stationary value of the time-variant bandwidth
parameter of process XðtÞ computed using the unit step function
as the time-modulating function. The min and max operators
are introduced because the quantity ½qXðtÞ � qX;∞� can become
negative for general nonstationary excitations, whereas the quantity

½qXðtÞ � qðWNÞ
X;∞ � is always positive for WN excitation and at-rest

initial conditions.
Correction 2. The equivalent damping ratio, ~ξ, is taken as the

value of the damping ratio that would provide the same stationary
value of the time-variant bandwidth parameter obtained from the
colored noise excitation if the SDOF system was subjected to
WN excitation. This equivalent damping ratio can be found
using the closed-form expression of the time-variant bandwidth
parameter (Barbato and Conte 2008) as follows:

~ξ ¼ zero

8<
:qX;∞ �

8<
:1�

4 ·
h
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p
∕ξ
	i

2

π2 · ð1� ξ2Þ

9=
;

1∕29=
; ð11Þ

in which the operator zero = root of the quantity in parentheses.
Because the time-variant bandwidth parameter is a monotonically
increasing continuous function of ξ, the solution ~ξ of the transcen-
dental Eq. (11) exists and is unique for any 0 ≤ qX;∞ < 1.

Correction 3. The equivalent normalized failure threshold, ~ζðtÞ,
is computed as follows:

~ζðtÞ ¼ xlim
σX;max · AðtÞ

·
Gðω0Þ
S0

ð12Þ

in which Gðω0Þ = power spectral density of the colored noise
excitation computed at ω0 ¼ 2 · π∕T = natural circular frequency of
the SDOF system and S0 ¼ 1 · m2∕s3 = normalization factor.

Correction 4. If AðtÞ does not present a discontinuity for t ¼
0 s (i.e., the time-modulating function increases gradually from
zero to its maximum value), it is assumed that C2ð~ξ; ~ζðtÞ; tÞ ¼ 0.
Otherwise, C2ð~ξ; ~ζðtÞ; tÞ is computed according to Eq. (10).

The time-modulating function, AðtÞ, is scaled here so that its
maximum value in time is equal to 1 [i.e., maxt≥0½AðtÞ� ¼ 1 (see
Fig. 4)]. It is noteworthy that the equivalent damping ratio ~ξ
and the equivalent normalized threshold level ~ζðtÞ reduce to the
actual damping ratio ξ and normalized threshold level ζ for the case
of SDOF systems subjected to WN excitation from at-rest initial
conditions, i.e., Eqs. (6) and (7) can be regarded as special cases
of Eqs. (9) and (10).

Table 1. Coefficients of the Polynomial Representation of Ci;∞(i ¼ 1, 2) Given in Eq. (8)

i PðiÞ
00 PðiÞ

10 PðiÞ
01 PðiÞ

20 PðiÞ
11 PðiÞ

02 PðiÞ
30 PðiÞ

21 PðiÞ
12 PðiÞ

03 PðiÞ
40 PðiÞ

31 PðiÞ
22 PðiÞ

13 PðiÞ
04 PðiÞ

50 PðiÞ
41 PðiÞ

32 PðiÞ
23 PðiÞ

14

1 1.566 �22:23�0:091 99.95 16.26 0.07 �252:3�52:57�5:714�0:027 367.9 67.92 10.16 0.88 0.003 �214 �39:94�4:476�0:654�0:052

2�5:319 29.07 6.734 39.89�48:47�1:639�711:7 162 7.3 0.12 1712 �181:5�23:96 0.192 0.001�1304 80.33 11.93 1.218 �0:081
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Fig. 2. Comparison between the interpolation surface C1;∞ (Surf) and
values �C1;∞ obtained through least-square fitting (LSF)
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Fig. 3. Comparison between the interpolation surface C2;∞ (Surf) and
values �C2;∞ obtained through least-square fitting (LSF)
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Parametric Study to Evaluate the Accuracy of the
Existing and Newly Proposed Analytical
Approximations

The results of an extensive parametric study are presented here to
evaluate the absolute and relative accuracy of the P, cVM, and
mVM approximations, as well as the accuracy of the newly pro-
posed analytical approximation (denoted as New). This parametric
study considers a wide range of natural periods, damping ratios,
and threshold levels, as well as different input spectra and
time-modulating functions. The time-variant FPFP results obtained
from the analytical approximations are compared with the corre-
sponding results obtained using the ISEE method with a target
COVof 0.01, which is considered the reference solution. The value
of COV = 0.01 used for this parametric study is chosen because it
provides sufficiently accurate estimates of the FPFP at a feasible
computational cost (several times smaller than the computational
effort required to obtain the value COV = 0.001 used to calibrate
the analytical approximation denoted as New). The comparison be-
tween analytical approximations and ISEE results is based on the
percent error ε ¼ 100 · ðPf ;i � Pf ;ISEEÞ∕Pf ;ISEE (i = P, cVM, mVM,
New). For each type of input loading considered, synoptic results
are also provided including the maximum (εmax) and minimum
(εmin) percent errors, as well as the mean of the absolute values

of the percent errors (μjεj) computed for the different damping
ratios and normalized threshold levels considered. These synoptic
results indicate whether a given approximate analytical solution
tends to overestimate (εmax) or to underestimate (εmin) the FPFP.
They also provide information regarding the average value of
the error corresponding to a specific analytical solution for a given
loading condition (μjεj). Because of space constraints, only selected
results are presented in this paper. Additional results can be found
in Ghazizadeh (2011). It is worth mentioning that the different
analytical approximations involve a similar computational cost,
which can be several orders of magnitude smaller than the compu-
tational cost associated with the ISEE method.

Input Excitation Models

Two types of random excitations are considered in this study:
(1) a WN excitation, represented by a constant power spectral
density [i.e., GðωÞ ¼ S0, in which ω = circular frequency, and
S0 ¼ 1 m2∕s3], and (2) a nonwhite excitation, modeled by using
a Kanai-Tajimi (KT) power spectral density function. The KT
power spectral density function is given by

GðωÞ ¼ 1þ 4 · ξ2g · ðω∕ωgÞ2
½1� ðω∕ωgÞ2�2 þ ð2 · ξg · ω∕ωgÞ2

· S0 ð13Þ

in which ξg = predominant ground damping ratio and ωg = ground
natural circular frequency. In this study, ξg ¼ 0:6 and ωg ¼ 9π are
used (Vanmarcke 1976).

Two time-modulating functions are considered: (1) a unit step
function, HðtÞ, and (2) a Shinozuka-Sato modulating function
(Shinozuka and Sato 1967). The latter modulating function is
defined as

AðtÞ ¼ C · ½e�B1t � e�B2t� · HðtÞ ð14Þ

in which B1 and B2 = constants defining the shape of the time-
modulating function and C = normalizing constant. In this study,
the following values are assumed for these constants: B1 ¼ 0:20,
B2 ¼ 0:25, and C ¼ 12:207. The two modulating functions consid-
ered are shown in Fig. 4.
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Fig. 4. Time modulating functions: (1) unit step function; and
(2) Shinozuka-Sato with B1 ¼ 0:20 and B2 ¼ 0:25

Table 2. Time-Variant FPFP (t0 ¼ 10) for Linear Elastic SDOF Systems Subjected to WN Base Excitation from At-Rest Initial Conditions (i.e., with Unit
Step Time-Modulating Function)

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 1:23E� 01 3:39E� 01 176.24 1:66E� 01 35.26 1:29E� 01 4.87 1:20E� 01 �2:29

0.05 6:15E� 01 8:68E� 01 41.22 6:78E� 01 10.25 6:07E� 01 �1:37 6:11E� 01 �0:59

0.10 7:84E� 01 9:07E� 01 15.77 7:98E� 01 1.85 7:52E� 01 �4:03 7:92E� 01 1.07

0.50 9:32E� 01 9:29E� 01 �0:35 9:13E� 01 �2:04 9:05E� 01 �2:90 9:33E� 01 0.04

3 0.01 3:49E� 03 7:66E� 03 119.47 4:07E� 03 16.64 3:14E� 03 �10:01 3:20E� 03 �8:35

0.05 7:79E� 02 1:34E� 01 71.73 8:67E� 02 11.26 7:35E� 02 �5:60 7:71E� 02 �1:05

0.10 1:28E� 01 1:68E� 01 31.41 1:26E� 01 �0:96 1:14E� 01 �10:83 1:29E� 01 0.82

0.50 1:91E� 01 1:93E� 01 1.05 1:79E� 01 �6:22 1:76E� 01 �8:13 1:88E� 01 �2:00

4 0.01 2:24E� 05 3:82E� 05 70.60 2:37E� 05 5.55 1:86E� 05 �16:96 2:15E� 05 �4:19

0.05 2:72E� 03 3:79E� 03 39.36 2:75E� 03 0.89 2:37E� 03 �13:03 2:70E� 03 �0:58

0.10 4:60E� 03 5:25E� 03 14.04 4:31E� 03 �6:23 3:94E� 03 �14:25 4:62E� 03 0.47

0.50 6:31E� 03 6:41E� 03 0.02 6:16E� 03 �2:36 6:08E� 03 �3:65 6:21E� 03 �1:43

εmax% 176.24 εmax% 35.26 εmax% 4.87 εmax% 1.07

εmin% �0:35 εmin% �6:23 εmin% �16:96 εmin% �8:35

μjεj% 48.44 μjεj% 8.29 μjεj% 7.97 μjεj% 1.90
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Results for Linear SDOF Systems Subjected to WN
Excitation from At-Rest Initial Conditions

For linear SDOF systems subjected to WN excitation from at-rest
initial conditions, it can be shown that the time-variant FPFP de-
pends on the time t and the natural period of the system T only
through the normalized time t0 ¼ t∕T (see the appendix). Thus,
the results are presented here as a function of the normalized time,
damping ratio, and normalized threshold, and are valid for any
natural period of the system. Table 2 shows the estimates of the
FPFP corresponding to t0 ¼ 10; normalized thresholds ζ ¼ 2, 3,
and 4; and damping ratios ξ ¼ 0:01, 0.05, 0.10, and 0.50, computed
using the ISEE method, as well as using the P, cVM, mVM, and
New approximations. The FPFP values range from a maximum
value of 0.932 to a minimum value of 2:24 × 10�5. Table 2 also
provides the percent error ε, as well as the minimum percent error,
maximum percent error, and mean of the absolute values of the
percent error for each of the considered analytical approximations.
As expected, the P approximation consistently overestimates the
FPFP, sometimes even by a large factor. The cVM and mVM
approximations produce similar results and are more accurate than
the P approximation. The cVM approximation tends to overesti-
mate the FPFP, particularly for small damping, whereas the
mVM approximation tends to underestimate the FPFP, particularly
for large thresholds. The New approximation is overall signifi-
cantly more accurate than all other analytical approximations, with
a slight tendency to underestimate the FPFP. It presents the smallest
value of the maximum error (εmax ¼ 1:07%) and of the mean of
the absolute values of the errors (μjεj ¼ 1:90%), which are more
than four times smaller than the corresponding quantities for
the second best approximation (i.e., in this case, the mVM
approximation).

Table 3 provides the FPFP estimates for linear SDOF systems
subjected to WN excitation from at-rest initial conditions with
given normalized threshold ζ ¼ 5 and varying normalized time
t0 ¼ 10, 20, and 50. The FPFP values ranged from a maximum
value of 3:72 × 10�4 to a minimum value of 3:53 × 10�8. Also
in this case, it is observed that the P approximation over-
estimates the FPFP, the cVM approximation tends to overestimate
the FPFP, and the mVM approximation tends to underestimate
the FPFP. The New approximation is very accurate under all

combinations of damping ratios and normalized times, with
μjεj ¼ 1:73%.

Fig. 5 plots the comparison of the FPFP estimates obtained
using the ISEE method and the P, cVM, mVM, and New approx-
imations for a linear SDOF system with damping ratio ξ ¼ 0:023
for a normalized threshold of ζ ¼ 4:87. It is noteworthy that the
damping ratio and the normalized threshold values used in this
example are not included among the values used to define the
functions C1;∞ðξ; ζÞ and C2;∞ðξ; ζÞ. The agreement between
the results obtained using the ISEE method and the New approx-
imation is excellent over the entire range of normalized times,
clearly showing that the New approximation is superior to all
other considered analytical approximations for this input loading
case.

Results for Linear SDOF Systems Subjected to WN
Excitation Modulated in Time by a Shinozuka-Sato
Function

For linear SDOF systems subjected to time-modulated WN
excitation, the time-variant FPFP depends on both the time, t,
and the natural period of the system, T . Table 4 presents the FPFP
values obtained using the ISEE method and the four analytical

Table 3. Time-Variant FPFP for Linear Elastic SDOF Systems Subjected to WN Base Excitation from At-Rest Initial Conditions (i.e., with Unit Step
Time-Modulating Function) for a Given Normalized Threshold of ζ ¼ 5 and Different Values of the Normalized Time t0

t0 ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

10 0.01 3:53E� 08 5:00E� 08 41.56 3:46E� 08 �2:12 2:78E� 08 �21:38 3:42E� 08 �3:27

0.05 3:16E� 05 3:74E� 05 18.20 2:98E� 05 �5:91 2:62E� 05 �17:18 3:10E� 05 �2:07

0.10 5:28E� 05 5:59E� 05 5.97 4:94E� 05 �6:44 4:60E� 05 �12:82 5:32E� 05 0.75

0.50 6:97E� 05 7:09E� 05 1.83 6:97E� 05 �0:02 6:91E� 05 �0:77 6:93E� 05 �0:48

20 0.01 4:69E� 06 9:74E � 06 107.75 5:57E� 06 18.78 4:18E� 06 �10:74 4:66E� 06 �0:63

0.05 9:29E� 05 1:12E� 04 20.17 8:81E� 05 �5:18 7:72E� 05 �16:86 9:12E� 05 �1:82

0.10 1:24E� 04 1:30E� 04 5.59 1:15E� 04 �6:94 1:07E� 04 �13:36 1:24E� 04 0.23

0.50 1:44E� 04 1:45E� 04 0.83 1:43E� 04 �1:01 1:42E� 04 �1:76 1:42E� 04 �1:57

50 0.01 7:01E� 05 1:86E� 04 165.23 9:60E� 05 37.03 6:99E� 05 �0:26 7:40E� 05 5.61

0.05 2:75E� 04 3:35E� 04 22.10 2:64E� 04 �3:95 2:31E� 04 �15:90 2:73E� 04 �0:73

0.10 3:37E� 04 3:54E� 04 4.99 3:12E� 04 �7:55 2:90E� 04 �13:97 3:36E� 04 �0:42

0.50 3:72E� 04 3:69E� 04 �0:78 3:62E� 04 �2:60 3:60E� 04 �3:34 3:60E� 04 �3:23

εmax% 165.23 εmax% 37.03 εmax% �0:26 εmax% 5.61

εmin% �0:78 εmin% �7:55 εmin% �21:38 εmin% �3:27

μjεj% 32.92 μjεj% 8.13 μjεj% 10.70 μjεj% 1.73
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Fig. 5. FPFP for a linear elastic SDOF system subjected to WN base
excitation from at-rest initial conditions (ξ ¼ 0:023, ζ ¼ 4:87)
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approximations considered for SDOF oscillators with T ¼ 1:0 s
and with different damping ratios at t ¼ 20 s. The FPFP values
ranged from a maximum value of 0.750 to a minimum value of
1:33 × 10�3. Also, in this case, the P approximation largely over-
estimates the FPFP, the cVM approximation tends to overestimate
the FPFP (particularly for small damping ratios), and the mVM
approximation underestimates the FPFP (particularly for high
thresholds). The New approximation is the most accurate among
the analytical approximations (with μjεj ¼ 5:69%), even if it under-
estimates the FPFP for small damping ratios.

Fig. 6 plots the comparison of the FPFP estimates obtained
using the ISEE method and the P, cVM, mVM, and New approx-
imations for a linear SDOF system with T ¼ 1:0 s and ξ ¼ 0:42 for
a normalized threshold value of ζ ¼ 3:5. The New approximation
provides the best agreement with the ISEE results among all
analytical approximations considered here.

Table 4. Time-Variant FPFP Computed at t ¼ 20 s for Linear Elastic SDOF Systems with the Natural Period T ¼ 1:0 s Subjected to WN Base Excitation
Time Modulated by a Shinozuka-Sato Function

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 3:90E� 01 9:21E� 01 136.15 5:00E� 01 28.16 3:77E� 01 �3:38 3:21E� 01 �17:62

0.05 4:99E� 01 7:83E� 01 56.83 5:61E� 01 12.37 4:88E� 01 �2:24 4:87E� 01 �2:48

0.10 5:95E� 01 7:53E� 01 26.53 6:07E� 01 2.02 5:56E� 01 �6:47 5:99E� 01 0.69

0.50 7:50E� 01 7:41E� 01 �1:23 7:09E� 01 �5:43 6:97E� 01 �7:11 7:40E� 01 �1:30

3 0.01 4:01E� 02 1:37E� 01 240.73 4:94E� 02 23.33 3:46E � 02 �13:59 3:36E� 02 �16:12

0.05 4:95E� 02 8:47E� 02 71.03 5:36E� 02 8.21 4:50E� 02 �9:12 4:84E� 02 �2:38

0.10 5:87E� 02 7:76E� 02 32.32 5:81E� 02 �0:91 5:21E� 02 �11:15 5:99E� 02 2.07

0.50 7:43E� 02 7:52E� 02 1.27 6:98E� 02 �6:00 6:84E� 02 �7:93 7:25E� 02 �2:33

4 0.01 1:33E� 03 3:38E� 03 154.94 1:45E� 03 9.36 1:03E� 03 �22:39 1:09E� 03 �17:68

0.05 1:51E� 03 2:05E� 03 36.22 1:47E� 03 �2:32 1:26E� 03 �16:25 1:48E� 03 �1:95

0.10 1:65E� 03 1:87E� 03 13.42 1:55E� 03 �6:40 1:41E� 03 �14:41 1:67E� 03 0.90

0.50 1:80E� 03 1:81E� 03 0.62 1:74E� 03 �3:12 1:72E� 03 �4:35 1:75E� 03 �2:78

εmax% 240.73 εmax% 28.16 εmax% �2:24 εmax% 2.07

εmin% �1:23 εmin% �6:40 εmin% �22:39 εmin% �17:68

μjεj% 64.27 μjεj% 8.97 μjεj% 9.87 μjεj% 5.69
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Fig. 6. FPFP for a linear elastic SDOF system with natural period
T ¼ 1:0 s subjected to WN base excitation with a Shinozuka-Sato
modulating function (ξ ¼ 0:42, ζ ¼ 3:5)

Table 5. Time-Variant FPFP Computed at t ¼ 1:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 0:1 s Subjected to KT Base Excitation from
At-Rest Initial Conditions (i.e., with Unit Step Time-Modulating Function)

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 1:60E� 01 3:74E� 01 133.71 2:18E� 01 36.11 1:79E� 01 12.05 1:78E� 01 11.16

0.05 6:84E� 01 8:55E� 01 25.04 7:06E� 01 3.26 6:50E� 01 �5:01 6:92E� 01 1.12

0.10 8:05E� 01 8:72E� 01 8.31 7:71E� 01 �4:22 7:30E� 01 �9:25 7:90E� 01 �1:86

0.50 7:97E� 01 7:84E� 01 �1:56 7:32E� 01 �8:17 7:10E� 01 �10:88 7:75E� 01 �2:71

3 0.01 5:02E� 03 9:68E� 03 93.05 6:00E� 03 19.73 4:92E� 03 �1:89 4:75E� 03 �5:33

0.05 9:30E� 02 1:30E� 01 39.45 9:27E� 02 �0:27 8:18E� 02 �12:05 8:93E� 02 �4:00

0.10 1:29E� 01 1:49E� 01 15.32 1:17E� 01 �9:19 1:07E� 01 �16:74 1:22E� 01 �5:61

0.50 1:12E� 01 1:17E� 01 4.40 1:04E� 01 �7:68 9:98E� 02 �11:23 1:12E� 01 �0:76

4 0.01 3:44E� 05 5:60E� 05 62.90 3:96E� 05 15.26 3:31E� 05 �3:62 3:17E� 05 �7:69

0.05 3:13E� 03 3:71E� 03 18.32 2:92E� 03 �6:72 2:62E� 03 �16:41 2:82E� 03 �10:00

0.10 4:35E� 03 4:65E� 03 6.90 3:97E� 03 �8:72 3:69E� 03 �14:98 4:09E� 03 �5:97

0.50 3:56E� 03 3:75E� 03 5.37 3:49E� 03 �1:72 3:40E� 03 �4:35 3:65E� 03 2.78

εmax% 133.71 εmax% 36.11 εmax% 12.05 εmax% 11.16

εmin% �1:56 εmin% �9:19 εmin% �16:74 εmin% �10:00

μjεj% 34.53 μjεj% 10.09 μjεj% 9.87 μjεj% 4.91
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Results for Linear SDOF Systems Subjected to a KT
Excitation from At-Rest Initial Conditions

For linear SDOF systems subjected to nonwhite excitation, the
time-variant FPFP depends on the time, t, and the natural period
of the system, T . Tables 5–7 compare the FPFP values computed
using the ISEE method and the four analytical approximations con-
sidered for linear SDOF systems with T ¼ 0:1, 0.5, and 1.0 s,
respectively, subjected to a KT excitation from at-rest initial con-
ditions. The following observations are made: (1) the P approxima-
tion largely overestimates the FPFP, with very large errors for small
values of the damping ratio; (2) the cVM approximation tends to
overestimate the FPFP, particularly for low damping ratios and low
thresholds; and (3) the mVM tends to underestimate the FPFP.
Again, the New approximation is more accurate than the other ana-
lytical approximations, particularly in the case of T ¼ 1:0 s, in
which the New approximation presents an accuracy similar to

Table 6. Time-Variant FPFP Computed at t ¼ 5:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 0:5 s Subjected to KT Base Excitation from
At-Rest Initial Conditions (i.e., with Unit Step Time-Modulating Function)

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 1:20E� 01 3:39E� 01 182.15 1:49E� 01 24.35 1:12E� 01 �6:92 1:09E� 01 �9:49

0.05 5:94E� 01 8:69E� 01 46.43 6:39E� 01 7.66 5:56E� 01 �6:37 6:31E� 01 6.30

0.10 7:91E� 01 9:09E� 01 14.92 7:68E� 01 �2:92 7:09E� 01 �10:40 7:41E� 01 �6:29

0.50 9:23E� 01 9:29E� 01 0.63 8:99E� 01 �2:61 8:85E� 01 �4:09 9:31E� 01 0.80

3 0.01 3:34E� 03 7:66E� 03 129.25 3:67E� 03 9.85 2:73E� 03 �18:30 3:20E� 03 �4:38

0.05 7:56E� 02 1:34E� 01 77.18 7:94E� 02 4.97 6:51E� 02 �13:87 8:89E� 02 17.49

0.10 1:26E� 01 1:69E� 01 34.14 1:18E� 01 �6:12 1:03E� 01 �17:93 1:25E� 01 �0:92

0.50 1:92E� 01 1:93E� 01 0.75 1:73E� 01 �9:80 1:67E� 01 �12:88 1:87E� 01 �2:32

4 0.01 2:21E� 05 3:83E� 05 73.04 2:16E� 05 �2:46 1:64E� 05 �26:13 2:02E� 05 �8:59

0.05 2:65E� 03 3:80E� 03 43.07 2:54E� 03 �4:31 2:12E� 03 �20:28 2:97E� 03 12.02

0.10 4:48E� 03 5:28E� 03 18.06 4:08E� 03 �8:80 3:63E� 03 �19:00 4:44E� 03 �0:71

0.50 6:33E� 03 6:41E� 03 1.37 6:01E� 03 �4:96 5:87E� 03 �7:27 6:29E� 03 �0:55

εmax% 182.15 εmax% 24.35 εmax% �4:09 εmax% 17.49

εmin% 0.63 εmin% �9:80 εmin% �26:13 εmin% �9:49

μjεj% 51.75 μjεj% 7.40 μjεj% 13.62 μjεj% 5.82

Table 7. Time-Variant FPFP Computed at t ¼ 10:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 1:0 s Subjected to KT Base Excitation from
At-Rest Initial Conditions (i.e., with Unit Step Time-Modulating Function)

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 1:22E� 01 3:42E� 01 180.89 1:66E� 01 36.11 1:28E� 01 5.15 1:21E� 01 �0:56

0.05 6:12E� 01 8:71E� 01 42.32 6:76E� 01 10.55 6:03E� 01 �1:37 6:06E� 01 �0:95

0.10 8:00E� 01 9:10E� 01 13.76 7:98E� 01 �0:23 7:51E� 01 �6:17 7:89E� 01 �1:47

0.50 9:50E� 01 9:36E� 01 �1:46 9:19E� 01 �3:34 9:10E� 01 �4:27 9:40E� 01 �1:09

3 0.01 3:55E� 03 7:80E� 03 119.71 4:10E� 03 15.43 3:15E� 03 �11:30 3:32E� 03 �6:41

0.05 7:83E� 02 1:35E� 01 72.10 8:64E� 02 10.35 7:30E� 02 �6:75 7:85E� 02 0.16

0.10 1:31E� 01 1:70E� 01 29.23 1:27E� 01 �3:54 1:14E� 01 �13:50 1:31E� 01 �0:53

0.50 1:99E� 01 2:00E� 01 0.69 1:85E� 01 �7:30 1:80E� 01 �9:47 1:94E� 01 �2:42

4 0.01 2:32E� 05 3:94E� 05 69.97 2:41E� 05 4.08 1:89E� 05 �18:46 2:27E� 05 �2:11

0.05 2:71E� 03 3:82E� 03 41.17 2:74E� 03 1.26 2:35E� 03 �13:07 2:78E� 03 2.51

0.10 4:67E� 03 5:32E� 03 14.03 4:34E� 03 �7:02 3:95E� 03 �15:30 4:72E� 03 1.09

0.50 6:65E� 03 6:68E� 03 0.38 6:38E� 03 �4:13 6:28E� 03 �5:64 6:46E� 03 �2:82

εmax% 180.89 εmax% 36.11 εmax% 5.15 εmax% 2.51

εmin% �1:46 εmin% �7:30 εmin% �18:46 εmin% �6:41

μjεj% 48.81 μjεj% 8.61 μjεj% 9.20 μjεj% 1.84
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Fig. 7. FPFP for a linear elastic SDOF system with natural period
T ¼ 0:1 s subjected to KT base excitation from at-rest initial conditions
(ξ ¼ 0:035, ζ ¼ 3)

702 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JUNE 2012

Downloaded 05 Jun 2012 to 130.39.98.232. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



Table 8. FPFP Computed at t ¼ 20:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 0:1 s Subjected to KT Base Excitation TimeModulated by
a Shinozuka-Sato Function

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 8:74E� 01 1:00Eþ 00 14.45 9:93E� 01 13.67 9:73E� 01 11.35 9:31E� 01 6.52

0.05 9:92E� 01 1:00Eþ 00 0.80 9:99E� 01 0.75 9:98E� 01 0.62 9:99E� 01 0.71

0.10 9:90E� 01 1:00Eþ 00 1.05 1:00Eþ 00 1.02 9:99E� 01 0.97 1:00Eþ 00 1.03

0.50 9:93E� 01 1:00Eþ 00 0.64 9:99E� 01 0.55 9:98E� 01 0.49 9:99E� 01 0.63

3 0.01 1:67E� 01 5:46E� 01 226.13 2:94E� 01 75.81 2:28E� 01 36.07 1:76E� 01 5.23

0.05 3:86E� 01 5:04E� 01 30.35 3:85E� 01 �0:50 3:45E� 01 �10:85 3:68E� 01 �4:91

0.10 4:45E� 01 4:74E� 01 6.51 3:94E� 01 �11:59 3:66E� 01 �17:74 4:05E� 01 �9:08

0.50 3:59E� 01 3:63E� 01 1.01 3:29E� 01 �8:45 3:18E� 01 �11:37 3:48E� 01 �3:04

4 0.01 6:87E� 03 1:81E� 02 163.96 9:66E� 03 40.61 7:34E� 03 6.85 5:58E� 03 �18:83

0.05 1:40E� 02 1:61E� 02 15.02 1:26E� 02 �9:87 1:13E� 02 �19:60 1:20E� 02 �14:10

0.10 1:44E� 02 1:48E� 02 3.12 1:27E� 02 �11:61 1:18E� 02 �17:67 1:30E� 02 �9:28

0.50 1:03E� 02 1:04E� 02 0.52 9:74E� 03 �5:81 9:48E� 03 �8:24 1:01E� 02 �1:82

εmax% 226.13 εmax% 75.81 εmax% 36.07 εmax% 5.23

εmin% 0.52 εmin% �11:61 εmin% �19:60 εmin% �18:83

μjεj% 38.63 μjεj% 15.02 μjεj% 11.82 μjεj% 6.27

Table 9. FPFP Computed at t ¼ 20:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 0:5 s Subjected to KT Base Excitation TimeModulated by
a Shinozuka-Sato Function

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 4:56E� 01 9:80E� 01 114.93 6:23E� 01 36.55 4:73E� 01 3.74 4:19E� 01 �8:12

0.05 6:80E� 01 9:40E� 01 38.16 7:44E� 01 9.35 6:57E� 01 �3:37 6:43E� 01 �5:45

0.10 8:12E� 01 9:36E� 01 15.23 8:11E� 01 �0:14 7:55E� 01 �7:08 7:90E� 01 �2:72

0.50 9:45E� 01 9:33E� 01 �1:36 9:02E� 01 �4:58 8:89E� 01 �5:94 9:31E� 01 �1:52

3 0.01 4:83E� 02 2:03E� 01 319.65 6:84E� 02 41.54 4:64E� 02 �4:05 4:86E� 02 0.47

0.05 8:21E� 02 1:50E� 01 82.93 8:82E� 02 7.39 7:18E� 02 �12:50 8:00E� 02 �2:57

0.10 1:09E� 01 1:47E� 01 35.21 1:03E� 01 �5:02 9:01E� 02 �17:09 1:10E� 01 1.12

0.50 1:45E� 01 1:45E� 01 �0:47 1:30E� 01 �10:54 1:26E� 01 �13:55 1:40E� 01 �3:71

4 0.01 1:68E� 03 5:25E� 03 212.60 2:04E� 03 21.30 1:39E� 03 �17:13 1:48E� 03 �11:54

0.05 2:58E� 03 3:77E� 03 46.12 2:50E� 03 �3:21 2:07E� 03 �19:82 2:36E� 03 �8:43

0.10 3:17E� 03 3:68E� 03 16.13 2:86E� 03 �9:89 2:54E� 03 �19:97 3:10E� 03 �2:20

0.50 3:60E� 03 3:61E� 03 0.44 3:40E� 03 �5:46 3:32E� 03 �7:69 3:55E� 03 �1:45

εmax% 319.65 εmax% 41.54 εmax% �4:05 εmax% 1.12

εmin% �0:47 εmin% �10:54 εmin% �19:97 εmin% �11:54

μjεj% 73.60 μjεj% 12.91 μjεj% 10.99 μjεj% 4.11

Table 10. FPFP Computed at t ¼ 20:0 s for a Linear Elastic SDOF System with Natural Period T ¼ 1:0 s Subjected to KT Base Excitation Time Modulated
by a Shinozuka-Sato Function

ζ ξ ISEE P ε (%) cVM ε (%) mVM ε (%) New ε (%)

2 0.01 3:94E� 01 9:21E� 01 133.80 4:96E� 01 25.79 3:72E� 01 �5:54 3:26E� 01 �17:28

0.05 4:94E� 01 7:85E� 01 58.96 5:59E� 01 13.11 4:85E� 01 �1:92 4:85E� 01 �1:87

0.10 6:03E� 01 7:57E� 01 25.52 6:07E� 01 0.59 5:55E� 01 �8:05 5:97E� 01 �1:04

0.50 7:64E� 01 7:54E� 01 �1:25 7:18E� 01 �6:00 7:04E� 01 �7:86 7:54E� 01 �1:30

3 0.01 4:00E� 02 1:37E� 01 242.28 4:89E� 02 22.37 3:41E� 02 �14:59 3:44E� 02 �13:94

0.05 4:89E� 02 8:53E� 02 74.40 5:34E� 02 9.16 4:47E� 02 �8:70 4:95E� 02 1.20

0.10 6:02E� 02 7:86E� 02 30.57 5:83E� 02 �3:21 5:21E� 02 �13:57 6:10E� 02 1.27

0.50 7:82E� 02 7:80E� 02 �0:14 7:18E� 02 �8:07 7:01E� 02 �10:26 7:52E� 02 �3:79

4 0.01 1:34E� 03 3:39E� 03 153.24 1:44E� 03 7.35 1:02E� 03 �24:13 1:08E� 03 �18:98

0.05 1:51E� 03 2:07E� 03 37.03 1:47E� 03 �2:66 1:25E� 03 �16:89 1:50E� 03 �0:46

0.10 1:69E� 03 1:90E� 03 12.40 1:55E� 03 �8:00 1:41E� 03 �16:20 1:70E� 03 0.46

0.50 1:84E� 03 1:88E� 03 2.34 1:80E� 03 �1:97 1:78E� 03 �3:44 1:82E� 03 �1:19

εmax% 242.28 εmax% 22.37 εmax% �3:44 εmax% 1.27

εmin% �0:14 εmin% �8:07 εmin% �24:13 εmin% �18:98

μjεj% 64.33 μjεj% 9.02 μjεj% 10.93 μjεj% 5.23
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the one achieved in the case of linear SDOF systems subjected to
WN excitation from at-rest initial conditions.

Fig. 7 plots the comparison of the FPFP estimates obtained
using the ISEE method and the P, cVM, mVM, and New approx-
imations for a linear SDOF system with T ¼ 0:1 s and ξ ¼ 0:035,
for a normalized threshold value of ζ ¼ 3:0. It is observed that the
P approximation significantly overestimates the FPFP, the two
Vanmarcke approximations provide an upper and a lower bound
of the FPFP, and the New approximation is in very good agreement
with the ISEE results.

Results for Linear SDOF Systems Subjected to a KT
Excitation Modulated in Time by a Shinozuka-Sato
Function

Tables 8–10 compare the FPFP values computed using the ISEE
method and the four analytical approximations considered
for linear SDOF systems with T ¼ 0:1, 0.5, and 1.0 s, respec-
tively, subjected to a KT excitation modulated in time by a
Shinozuka-Sato function. The observations regarding the absolute
and relative accuracy of the analytical approximations are very
similar to the observations made in the previous cases. In particu-
lar, the New approximation is much more accurate than the P
approximation and significantly more accurate than both the
cVM and mVM approximations. Fig. 8 plots the comparison
of the FPFP estimates obtained using the ISEE method and
the P, cVM, mVM, and New approximations for a linear SDOF
system with T ¼ 1:0 s and ξ ¼ 0:22 for a normalized threshold
value of ζ ¼ 2:2. In this case, the P and cVM approximations
provide an upper and a lower bound, respectively, for the FPFP,
whereas the New approximation is in excellent agreement with
the ISEE results.

Conclusion

The classical first-passage reliability problem for linear elastic
SDOF oscillators subjected to stationary and nonstationary
Gaussian excitations is explored. Existing analytical approxi-
mations (e.g., Poisson, classical Vanmarcke, and modified
Vanmarcke approximations) are reviewed and compared in terms
of absolute and relative accuracy in estimating the time-variant
FPFP.

A new analytical approximation of the FPFP for linear SDOF
systems is proposed by modifying the classical Vanmarcke
hazard function. This new approximation is verified by comparing

its analytical estimates of the FPFP with the corresponding results
obtained using existing analytical approximations and the ISEE
method for a wide range of damping ratios, natural periods,
and threshold levels. Different types of stochastic input excita-
tions are considered, including white and nonwhite spectra, with
a sudden application of the loads (i.e., with a unit step time-
modulating function) or with a load modulated in time by using
a Shinozuka-Sato function. The following conclusions are
reached:
1. The Poisson approximation generally overestimates (some-

times by a large factor) the FPFP;
2. The two Vanmarcke approximations are significantly more

accurate than Poisson’s approximation;
3. The classical Vanmarcke approximation tends to overestimate

the FPFP;
4. The modified Vanmarcke approximation tends to underesti-

mate the FPFP;
5. The relative accuracy of the two Vanmarcke approximations is

different on a case-by-case basis; and
6. The newly proposed analytical approximation of the hazard

function yields significantly improved estimates of the FPFP
when compared with Poisson, classical Vanmarcke, and mod-
ified Vanmarcke approximations.
This paper focuses on nonstationary excitations modeled as

separable nonstationary processes. Research is ongoing to extend
the proposed improved approximation of the time-variant FPFP to
linear elastic systems subjected to more general fully nonstationary
excitation models (e.g., processes with time-varying amplitude
and frequency content obtained as the summation of separable
nonstationary processes).

The new analytical approximation of the time-variant FPFP
for linear elastic SDOF systems subjected to stationary and/or
nonstationary Gaussian excitations provides an extremely valuable
tool for validating, in the linear range, numerical methods used to
estimate failure probabilities in more general cases, such as those
involving nonlinear structural behavior and non-Gaussian excita-
tions. This proposed analytical approximation is also very useful
in applications requiring numerous repeated computations of the
failure probability such as parametric studies and design optimiza-
tion because its computational cost is only a very small fraction
of the computational cost associated with simulation techniques.
Finally, this new analytical approximation represents an important
first step toward the development of a more general approximation
of the time-variant FPFP for linear and nonlinear multi-degree-
of-freedom systems subjected to stationary and/or nonstationary
excitations.

Appendix. FPFP Dependence on Normalized Time

The time-variant FPFP for a linear SDOF system subjected to a
WN excitation from at-rest initial conditions can be expressed as
a function of only the normalized time, normalized threshold,
and damping ratio. This fact can be shown by comparing the
ISEE results for the FPFP obtained for SDOF systems with
different natural periods (see Fig. 9) and can be expressed
mathematically as

Pf ;jXjðxlim; tÞ ¼ 1� exp

�
�
Z

t

0
hjXjðxlim; τÞ · dτ

�

¼ 1� exp

�
�
Z

t0

0

�hjXjðζ; τ0Þ · dτ0
�

¼ �Pf ;jXjðζ; t0Þ

ð15Þ
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Fig. 8. FPFP for a linear elastic SDOF system with natural period
T ¼ 1:0 s subjected to KT base excitation with a Shinozuka-Sato
modulating function (ξ ¼ 0:22, ζ ¼ 2:2)
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In this appendix, a superposed bar indicates a function that de-
pends on time and natural period only through the normalized
time t0. Eq. (15) implies that, for any natural period T , the
following relation holds:

hjXjðxlim; tÞ ¼
1
T
· �hjXjðζ; t0Þ ð16Þ

It can be demonstrated that the analytical approximations of the
hazard function given in Eqs. (2)–(5) satisfy Eq. (16). It is suf-
ficient to prove that Eq. (16) is satisfied by the newly proposed
hazard function given in Eq. (5). In Barbato and Conte (2008),
it was shown that the bandwidth parameter can be expressed as a
function of the normalized time [i.e., qXðtÞ ¼ �qXðt0Þ]. This rela-
tion also implies that C1ðξ; ζ; tÞ ¼ �C1ðξ; ζ; t0Þ and C2ðξ; ζ; tÞ ¼
�C2ðξ; ζ; t0Þ. From the closed-form solutions for the second-order
statistics of the displacement and velocity response of a linear
SDOF system subjected to a WN excitation with at-rest initial
conditions (Lutes and Sarkani 2004), it can also be shown that

σ2
XðtÞ ¼ σ2

X∞ · �σ2
Xðt0Þ ð17Þ

σ2
_X
ðtÞ ¼ σ2

X∞
T2 · �σ2

_X
ðt0Þ ð18Þ

KX _XðtÞ ¼
σ2
X∞
T

· �KX _Xðt0Þ ð19Þ

in which KX _XðtÞ = cross covariance of the displacement and
velocity responses of the linear SDOF system. The relation ω0 ·
t ¼ 2 · π · t0 is used in Eqs. (17)–(19). Thus, the following
relations are also valid:

ρX _XðtÞ ¼
KX _XðtÞ

σXðtÞ · σ _XðtÞ
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Finally, the following relation is obtained:
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