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Abstract: This paper employs a methodology for probabilistic response analysis based on the first-order second moment (FOSM) method in
conjunction with response sensitivity computation through the direct differentiation method (DDM), to study the variability of the structural
response of steel-concrete composite (SCC) beams. This methodology is applied to compute the first-order and second-order statistical
moments of the response of two actual structural systems for which experimental data are available. The results of the DDM-based FOSM
method are compared with the experimental measurements and with the results of the computationally more expensive Monte Carlo-
Simulation (MCS) method. Different modeling hypotheses for the material parameter uncertainty are considered. The DDM-based FOSM
method agrees very well with the MCS results for low-to-moderate levels of response nonlinearity under low-to-moderate material parameter
uncertainty and up to high level of response nonlinearity under low material parameter uncertainty. The DDM-based FOSM method is shown
to correctly describe the effects of random spatial variability of material parameters. DOI: 10.1061/(ASCE)ST.1943-541X.0000803.
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Introduction

In the last decades, steel-concrete composite (SCC) structures have
been widely used in building and bridge construction, motivating
several studies devoted to modeling, analysis, and design issues
(e.g., Viest et al. 1997; Oehlers and Bradford 1999; Galambos
2000; Mazzolani 2003; Spacone and El-Tawil 2004). There is
significant interest in the evaluation and practical application of
methods to propagate uncertainty from the parameters defining
the model of a structure (loading conditions, material and geomet-
ric properties, and other structural parameters having significant
random variability) to the engineering demand parameters (EDPs),
as needed for safety assessment, optimum design of new structures,
and optimum retrofit/maintenance of existing structures. Recent
studies investigated the response sensitivity of finite-element (FE)
models of SCC structures to their material constitutive parameters
(Zona et al. 2005, 2006; Barbato et al. 2007) and the effects
of model parameter uncertainty on the EDPs of SCC structures
(Amadio 2008; Zona et al. 2010). Significant research has been
devoted to methods for propagating uncertainty from model param-
eters to EDPs through FE analysis (Der Kiureghian and Ke 1988),
with studies focusing on two complementary perspectives, namely

reliability analysis (Ditlevsen and Madsen 1996) and probabilistic
response analysis (Grigoriu 2000). Reliability analysis focuses on
rare and/or extreme events (e.g., structural collapse, exceedance
of high thresholds by EDPs, loss of serviceability) and thus, is pri-
marily concerned with the accurate estimation of the tail of the
probability density functions (PDFs) of the EDPs. On the other
hand, probabilistic response analysis focuses on the low-order stat-
istical moments characterizing the body of the PDFs of the EDPs.
Probabilistic response analysis involves computing the probabilis-
tic characterization (i.e., statistical moments) of structural response
parameters, given as input the probabilistic characterization of
material, geometric, and loading parameters. Existing analytical
and semianalytical probabilistic response analysis methods are lim-
ited to linear structural models (Madsen and Bazant 1983; Bazant
and Liu 1985; Katafygiotis and Beck 1995) or simple nonlinear
structural models (Soize 1995). Numerical probabilistic response
analysis methodologies based on the FE method are able to provide
approximate probabilistic information about EDPs from state-of-
the-art mechanics-based models of real-world structures (Lawrence
1987; Ghanem and Spanos 1991; To 2001; Schueller 2001; Noh
2004; Stefanou 2009). However, these numerical techniques are
usually computationally expensive and require a compromise be-
tween accuracy and computational effort. Therefore, simplified
probabilistic response analysis methods, based on the combina-
tion of analytical/semianalytical probabilistic methods and the FE
method, and sufficiently accurate for engineering purposes, are of
particular practical and theoretical interest. On one hand, the effi-
cient integration of advanced nonlinear FE analysis and simplified
probabilistic response analysis is an appealing approach to quantify
the response variability of complex large-scale systems by using
tools that are well-known and widely accepted by the design com-
munity. On the other hand, this integration can be beneficial in the
area of performance-based analysis and design of SCC structures,
as well as in the calibration of the partial resistance factors needed
in modern design codes.

This study analyzes the effects on the structural response of
the uncertainties in material and shear connection constitutive
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parameters used to define the FE models of SCC beams. It is
assumed that the statistical information available is limited to the
first-order and second-order statistics (means, variances, and cor-
relation coefficients) of the material constitutive parameters, and
the statistical information of interest consists of first-order and
second-order statistics of structural response parameters, also re-
ferred to as EDPs. This investigation is performed using two dif-
ferent probabilistic response analysis methods, based on nonlinear
static FE response analysis of SCC structures and characterized by
different accuracy and computational cost, i.e., Monte Carlo sim-
ulation (MCS) and the first-order second-moment (FOSM) method
(Ang and Tang 1975; Wong 1985). The FOSM method is used
in conjunction with response sensitivity computation through the
direct differentiation method (DDM), resulting in the DDM-based
FOSM method (Haukaas and Der Kiureghian 2005; Barbato et al.
2010). Probabilistic response analysis results are presented in detail
for a simply supported beam and a two-span continuous beam, for
which experimental test results and statistical data on the material
model parameters are available.

The contributions of this paper consist in: (1) applying the
DDM-based FOSM method as a computationally efficient method
to propagate uncertainty from model parameters to EDPs of SCC
structures through advanced nonlinear FE analysis by using exper-
imentally validated FE models; (2) evaluating the advantages and
limitations of the FOSM method when compared with MCS, as
applied to real-world nonlinear SCC beam structures for which
experimental data are available; and (3) investigating the effects of
model parameter uncertainty on the predicted response of SCC
beams, with particular emphasis on the comparison of the results
obtained by estimating the coefficient of variation (COV) of the
material parameters from material tests specifically performed for
the subject structure and by using typical values of these COVs
recommended in the literature. It is noteworthy that SCC structures
present similar issues in FE modeling and probabilistic characteri-
zation of material parameters as both (reinforced concrete) RC and
steel structures, but also very specific deterministic and probabilis-
tic modeling issues related to the interaction between the RC and
steel components. Thus, probabilistic response analysis methods
developed for SCC structures are also suitable for RC-only or
steel-only structures as special cases.

Review of Finite-Element-Based Probabilistic
Response Analysis

This study considers two FE-based probabilistic response analysis
methods, i.e., crude MCS (Liu 2001), and the mean-centered
DDM-based FOSM method (Haukaas and Der Kiureghian 2005;
Barbato et al. 2010). The relevance of FE-based probabilistic
response analysis methods derives from the fact that, for real-
world problems, FE analysis is widely used to perform re-
sponse simulation (i.e., computation of response quantities r ¼
½r1; r2; : : : ; rn�T for given values of a set of random parameters
θ ¼ ½θ1; θ2; : : : ; θm�T , in which the superscript T denotes the
vector/matrix transposition operator). This study focuses on prob-
abilistic response analysis methods based on quasi-static nonlinear
FE analysis used to simulate the response of structural component/
systems subjected to quasi-static experimental testing.

Probabilistic Response Analysis through Monte Carlo
Simulation

Crude MCS is a general and accurate but computationally expen-
sive probabilistic response analysis method. MCS requires knowl-
edge of the joint PDF of the random parameters, Θ, which is,

in general, only partially known. Thus, appropriate probability
distribution models, consistent with the incomplete statistical infor-
mation available, must be used to generate realizations of the vector
Θ. In addition, the number, N, of FE simulations required by
MCS can be large for accurate estimation of marginal and joint
moments of response quantities, R, and increases rapidly with
the order of the moments. Because each simulation, for real-world
structures, may involve a complex nonlinear FE analysis, repeating
such analyses a large number of times could be computationally
prohibitive.

In this study, MCS is used as a reference solution for the sig-
nificantly less computationally intensive FOSM method. In the
MCS analysis, the FE models are built using the various realiza-
tions of the model parameters, simulated appropriately from a Nataf
model (for the joint PDF) consistent with the available (incomplete)
statistical information (Melchers 1999).

Probabilistic Response Analysis through First-Order
Second-Moment Method

The FOSMmethod is a simplified and computationally inexpensive
method for FE-based probabilistic response analysis. It estimates
the mean values (first-order statistical moments), variances, and co-
variances (second-order statistical moments) of the FE response
parameters or EDPs of interest by using a first-order Taylor series
expansion of these nonlinear response quantities in terms of the
random/uncertain model parameters (Ang and Tang 1975; Wong
1985). In this study, only the mean-centered (i.e., Taylor series ex-
pansion about the mean point) DDM-based FOSM method is em-
ployed and referred to as FOSM analysis. The FOSM method
requires only the knowledge of the first-order and second-order
statistical moments of the random parameters. Often statistical
information about the random parameters is limited to first and
second moments. Thus, in such cases, probabilistic response analy-
sis methods more advanced than FOSM analysis cannot be fully
exploited.

In the sequel, uppercase letters Θ, Θ, R, and R denote random
quantities, the corresponding lower case letters θ, θ, r, and r denote
specific realizations of these random quantities, bold fonts are used
to denote matrix/vector quantities, and regular fonts are employed
for scalar quantities. Given the vector Θ of m random parameters,
with covariance matrix ½Σθ�ij ¼ ρij · σi · σj; i, j ¼ 1; 2; : : : ;m,
where ρij = correlation coefficient of random parameters Θi and
Θj (ρij ¼ 1; i ¼ 1; 2; : : : ;m), and σi = standard deviation of ran-
dom parameter Θi, the vector R of the n response quantities of
interest is approximated by a first-order truncation of its Taylor
series expansion in the random parameters Θ about the mean vec-
tor, μΘ, of the parameter values (Ang and Tang 1975; Wong 1985).
The first-order and second-order statistical moments of the re-
sponse quantities R are approximated by the corresponding mo-
ments of the linearized response quantities as follows:

μR ≈ rðμΘÞ ð1Þ

ΣR ≈ ∇θrjθ¼μΘ
· ΣΘ · ð∇θrjθ¼μΘ

ÞT ð2Þ

in which ½∇θr�ij ¼ ∂ri=∂θj (i ¼ 1; : : : ; n and j ¼ 1; : : : ;m).
Eqs. (1) and (2) show that the FOSM approximation does not
require information about the marginal and joint PDFs of the
random parameters, which implies that using different probability
distributions of the model parameters, for a given mean vector μΘ
and covariance matrix ΣΘ, leads to the same FOSM estimates of
the means, variances, and covariances of the response parameters.
However, the FOSM estimate of the covariance matrix of the
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response parameters depends on the discretization of the random
fields describing the spatial variability of the model parameters.

The approximate first-order and second-order response statistics
computed using Eqs. (1) and (2) provide information on the vari-
ability of the EDPs and on their statistical correlation. They can also
be used to evaluate the relative importance of the random param-
eters in terms of their probabilistic influence on the EDPs (Haukaas
and Der Kiureghian 2005; Lee and Mosalam 2005; Barbato et al.
2010). These response statistics can be readily obtained when re-
sponse sensitivities (i.e., components of the gradient ∇θr of the re-
sponse quantities r with respect to parameters θ) evaluated at the
mean values of the random parameters are available. In fact, in ad-
dition to FE response-only computation, FOSM analysis requires
FE response sensitivity calculations (Kleiber et al. 1997), which are
performed in this study through the DDM (Vidal et al. 1991; Zhang
and Der Kiureghian 1993; Kleiber et al. 1997; Conte et al. 2003).
The DDM is an accurate FE response sensitivity analysis method,
particularly efficient for structural models characterized by nonlin-
ear hysteretic behavior. The DDM consists of differentiating ana-
lytically the space- and time-discretized equations of equilibrium/
motion for the FE model of the structure considered. Notably, only
a single FE analysis, with all model parameters set at their mean
value, is needed to perform a DDM-based FOSM probabilistic re-
sponse analysis, leading to a significant decrease in computational
cost compared to MCS.

Probabilistic Finite-Element Modeling of Steel-
Concrete Composite Beams

Finite-Element Formulation for Response and
Response Sensitivity Analysis

In this study, the SCC beams are modeled using composite frame
FEs with deformable shear connection. A composite frame FE
with deformable shear connection has important advantages over
the ordinary Euler-Bernoulli monolithic frame element, namely:
(1) more accurate modeling of the structural mechanical behavior
including partial composite action; (2) description of the slab-beam
interface slip and shear force behavior; (3) evaluation of the effects
of the interface slip on the stress distribution; and (4) inclusion
of damage and failure of the connectors. The two-dimensional
composite beam formulation used in this study is based on the
Newmark et al. (1951) model [Fig. 1(a)]. In this model, Euler-
Bernoulli beam theory (in small deformations) applies to both
components of the composite beam, and the deformable shear con-
nection is represented by an interface model with distributed bond,
allowing interlayer slip and enforcing contact between the steel
and concrete components. A simple and effective two-dimensional
10-degree-of-freedom (DOFs) displacement-based SCC frame
element with deformable shear connection (Dall’Asta and Zona
2002) is employed [Fig. 1(b)]. This locking-free element (Dall’Asta
and Zona 2004b) was validated through comparison of numerical
simulations and experimental results for monotonic (Dall’Asta and
Zona 2004a) and cyclic loads (Zona et al. 2008). Its formulation
was augmented for DDM-based response sensitivity analysis,
which was then validated by comparison with finite difference
calculations of FE response sensitivities (Zona et al. 2005, 2006).
Other alternative FE formulations were shown to also provide
good predictions of experimental results, e.g., two-field mixed
FE (Ayoub and Filippou 2000), force-based FE (Salari and Spacone
2001), three-field mixed FE (Dall’Asta and Zona 2004c), strain-
assumed FE (Cas et al. 2004). Among these alternative for-
mulations, only the three-field mixed FE was augmented for

DDM-based response sensitivity (Barbato et al. 2007). However,
the displacement-based FE was preferred in this study for its higher
robustness compared with the three-field mixed FE (Dall’Asta and
Zona 2004c).

In this study, first-order and second-order statistical moments of
the material parameters are specified from material test data, when
available, or by using statistical/probabilistic information obtained
from the literature. Typically, data are insufficient to reliably deter-
mine appropriate probability distributions for all material parame-
ters. Therefore, in such cases, different hypotheses on probability
distributions of material parameters need to be considered.

Deterministic and Probabilistic Modeling of
Constructional Steel Material

The material stress-strain behavior of steel beams is represented in
this paper through the uniaxial Menegotto and Pinto (1973) con-
stitutive model, which was extended for FE response sensitivity
computation in Barbato and Conte (2006). The three material
parameters of this model are: the yield stress, fy0, Young’s modu-
lus,E0, and the strain hardening ratio, b (i.e., the ratio between post-
yield and elastic stiffness). When specific experimental data are not
available, information on the variability of the material properties
of constructional steel can be obtained from several studies reported
in the literature, e.g., see Melchers (1999) for a review of earlier
data, and Simões da Silva et al. (2009) for more recent results.

The variability of the yield stress is influenced by a number of
parameters, e.g., steel grade, thickness of the test samples, and the
customary habit of classifying rejected higher grade steel as the
next lower grade. Previous studies (Melchers 1999; Simões da
Silva et al. 2009) indicate that the yield stress has a COV in the
range 0.08–0.13, depending on the steel productions considered.
Various probability distributions have been proposed, namely log-
normal, normal, and beta. Regarding the Young’s modulus, exper-
imental tests show very little scatter, with a COV lower than 0.06
regardless of the steel grade, whereas an appropriate probability
distribution is not clearly identified from the literature. Regarding
the strain hardening ratio, different values have been suggested
in tension and in compression, with a common COV ¼ 0.25
(Melchers 1999), whereas an appropriate probability distribution

(a)

(b) (c)

Fig. 1. Composite beammodel: (a) kinematic model; (b) finite-element
with degrees of freedom; (c) typical cross section
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cannot be identified from the literature. For the Young’s modulus
and strain hardening ratio, both normal and lognormal distributions
have been used in the literature. The three material parameters
(fy0, E0, b) of constructional steel are assumed uncorrelated,
i.e., with correlation coefficients ρfy0;E0

¼ ρfy0;b ¼ ρE0;b ¼ 0.

Deterministic and Probabilistic Modeling of Concrete
and Reinforcement Steel Materials

The selected constitutive law for the concrete material in compres-
sion is a uniaxial cyclic law with monotonic envelope defined
by the Popovics-Saenz law (Balan et al. 2001). The constitutive
material parameters modeled as random variables are the initial tan-
gent stiffness (Young’s modulus), Ec, the compressive strength, fc,
and the corresponding strain, εp, the softening stress, f0, at the in-
flection point of the softening branch, and the corresponding strain,
ε0. When specific experimental data are not available, the COVs for
Ec, fc, and εp are typically taken as 0.20, as suggested by studies
reported in the literature (Mirza et al. 1979). Similarly, the COVs
for f0 and ε0, for which no data are available experimentally or in
the literature, are assumed equal to 0.20. Based on engineering
judgment, the statistical correlation coefficients between fc and
f0, and between εp and ε0 are assumed equal to 0.8, to reduce
to negligible values the probability of physically unrealizable com-
binations of material parameter values (i.e., ε0 < εp and/or fc < f0)
in the definition of the relevant concrete constitutive laws. The stat-
istical correlation coefficients for all other pairs of material constit-
utive parameters are taken as zero.

The reinforcement steel is modeled using a Menegotto and Pinto
model (1973), with statistical properties of the model parameters
obtained from experimental data or, when data are not available,
from Mirza and MacGregor (1979), who report COVs equal to
0.033 and 0.106 for E0 and fy0, respectively. All reinforcement
steel parameters are assumed to be statistically independent and
thus uncorrelated.

Deterministic and Probabilistic Modeling of Shear
Connection

Various types of shear connection are available for SCC beams,
with welded headed shear studs being the most common in con-
struction today (Viest et al. 1997; Oehlers and Bradford 1999).
The behavior of a stud connector depends on the stud details
(height, diameter, and strength), as well as on the concrete proper-
ties, slab detailing (e.g., solid slab, slab with profiled steel sheeting,
hollow-cored slab), and reinforcement detailing. Many studies on
the static behavior of stud shear connectors are available in the tech-
nical literature, from experimental work that established constitu-
tive laws and formulas to estimate the connector bearing capacity
(e.g., Ollgaard et al. 1971), to experimental and numerical studies
of stud behavior under quasi-static monotonic loading (e.g., Oehlers
and Johnson 1987; An and Cederwall 1996; Lam and El-Lobody
2005; Xue et al. 2008) and cyclic loads (e.g., Gattesco and Giuriani
1996; Gattesco et al. 1997; Bursi and Gramola 1999; Civjan and
Singh 2003). The cyclic constitutive law adopted in this study for
the shear connection is described in Zona et al. (2008). The param-
eters needed to define the constitutive behavior of the shear con-
nection are the connection strength, fs;max, the ultimate slip, δult,
and the residual friction, τfr. Fig. 2 shows a typical cyclic shear
force-slip response obtained using the adopted constitutive model.
Attributable to the influence of many detailing parameters, the
experimental data available do not allow to identify a probability
distribution model for the constitutive parameters used to describe
the force-deformation behavior of the shear connection. In this

study, a COVof 0.20 is assumed for the shear connection strength,
i.e., similar to the COVof the concrete material parameters, assum-
ing that the shear connection failure due to concrete crushing is the
foremost source of uncertainty. This value of the COV is consistent
with the COV values adopted in reliability analysis studies found in
the literature (Ubejd Mujagi¢ and Easterling 2009). No statistical
information was found in the literature for the ultimate slip, δult,
and the residual friction, τfr, which are modeled in this paper
as deterministic variables with the following values: δult ¼ 6 mm
and τfr ¼ 0 kN=m. The shear connection strength is assumed
uncorrelated to the parameters of the other materials.

Modeling of Statistical Spatial Correlation

The considered material parameters need to be modeled as random
fields to rigorously represent their random spatial variability
(i.e., location-to-location variability) (Stefanou 2009). However,
experimental data are typically insufficient to determine the correla-
tion structure (auto-correlation and cross-correlation functions) for
all material parameters. In this study, a less rigorous but more prac-
tical approach is adopted to study the effects of spatial correlation
by considering the following two extreme hypotheses: (1) a single
random variable over the entire structure is used for each material
parameter (assumption corresponding to random fields with correla-
tion lengths much larger than the length of the beam structure an-
alyzed, which are equivalent to infinite correlation lengths for all
practical purposes, and no spatial variability within the structure);
and (2) the uncertainty of each material parameter is described using
a set of uncorrelated random variables, each corresponding to one of
the FEs used to discretize the structure (assumption corresponding to
random fields with correlation lengths much smaller than the length
of the shortest FE used to discretize the beam structure and, thus,
significant spatial variability within the structure). Noteably, a proper
random field discretization method should be used if sufficient
experimental data are available to build a realistic model of spatial
correlation. However, the intent of investigating the effect on
the response variability of the random spatial variability of all the
material model parameters considered is already achieved in the
present case by using this simplified two extreme cases approach.

Application Examples

Simply Supported Beam

The first benchmark problem considered in this study consists
of a 5.00-m-long simply supported beam [Fig. 3(a)], tested by

Fig. 2. Constitutive model for the shear connection
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Ansourian (1982) under a vertical concentrated monotonic quasi-
static load P applied at midspan, and referred to as Beam 2. The
joist section is a European IPBL200, and the RC slab section di-
mensions are 104 × 1,000 mm2. Because of the relatively narrow
width of the concrete slab, shear lag effects are neglected in the
modeling of this specimen. The reader is referred to Ansourian
(1982) for all details regarding the geometry and material proper-
ties. Additional unpublished data on the material testing (including
the results obtained from the individual material tests) were pro-
vided to the writers by Professor Ansourian (personal communica-
tion, 2007) and were used to estimate the mean and COV of the
concrete compressive strength fc and of the lower yield stress (also
known as static yield stress) (see Bruneau et al. 1998) fy0 of the
joist steel (Table 1). From a preliminary deterministic sensitivity
analysis performed using the DDM, it was found that these two
model parameters (fc and fy0) are the most influential material
parameters on the response of the benchmark structure considered
in this study. For all other material parameters, the mean values
were obtained from the test data provided in Ansourian (1982),
and typical values suggested or used in the literature were assumed
for their COVs as reported in Table 2 (Mirza et al. 1979; Mirza and
MacGregor 1979; Melchers 1999; Simões da Silva et al. 2009;
Ubejd Mujagi¢ and Easterling 2009).

The structure is discretized uniformly into eight 10-DOF
elements with five Gauss-Lobatto points each. A quasi-static, mon-
otonic, materially nonlinear-only analysis of the beam structure is
performed using the Newton-Raphson incremental-iterative pro-
cedure in displacement-control mode with the vertical displacement
at the point of application of the load taken as the controlled DOF,
thus mimicking the physical experiment. The midspan vertical de-
flection of the beam is incremented from 0.0 to 65.0 mm, with in-
crements of 0.5 mm. The 65.0 mm value of midspan deflection
corresponds to the experimental failure of the physical specimen
and is used as largest midspan deflection value for the FOSM
analysis. In the nonlinear analysis, the applied force is obtained
as the opposite of the internal resisting force exerted by the FE
model at the controlled DOF. Thus, although the midspan deflec-
tion is a deterministic variable, the applied force P is a random
variable and its mean value, μP, and standard deviation, σP, are
computed and shown in the following figures. The analyses of both
benchmark problems are performed using FEDEASLab (Filippou
and Constantinides 2004) in the version extended for DDM-based
FE response sensitivity analysis (Franchin 2004; Conte et al. 2004;
Zona et al. 2005, 2006; Barbato et al. 2007). FEDEASLab is a
Matlab (Mathworks 1997) toolbox suitable for linear and nonlinear,
static and dynamic FE analysis of structural models.

In Fig. 4, the experimental results and the mean response
obtained by using FOSM analysis are compared with the mean
response obtained through MCS based on 100 realizations of
the set of all material parameters modeled as random variables.
In the MCS, consistently with the statistical information available,
three different modeling assumptions for the uncertainty of the
material parameters are considered, i.e., material parameters repre-
sented by (1) a single lognormal random variable for the entire
structure (LN-∞); (2) one lognormal random variable for each

Table 1. Additional Data for Beam 2 Tested by Ansourian (1982)

Test

Concrete compressive
strength on 200-mm

cube (MPa)

Lower yield
stress for the
flange (MPa)

Lower yield
stress for the
web (MPa)

1 20.000 367.7085 384.4156
2 19.375 361.0229 363.6364
3 20.938 363.9371 374.3316
4 — 372.6065 —
Mean 20.10433 366.3188 374.1278
COV (%) 3.9 1.4 2.8

Table 2. Mean and COV Values for the Material Parameters Used in the
Benchmark Examples

Materials
Material
parameter

Beam 2 Beam CTB1

Mean COV (%) Mean COV (%)

Concrete fc (MPa) 20.1 3.9 24.6 20.0
f0 (MPa) 8.3 20.0 15.0 20.0
Ec (MPa) 25,457 20.0 29,000 20.0
εP (-) 0.0022 20.0 0.0020 20.0
ε0 (-) 0.0055 20.0 0.0045 20.0

Reinforcement
steel

fy0;reinf (MPa) 430.0 10.6 430.0 10.6
E0;reinf (MPa) 200,000 3.3 200,000 3.3

breinf (-) 0.005 15.0 0.003 15.0

Girder steel fy0;girder (MPa) — — 277.0 10.0
fy0;flange (MPa) 366.3 1.4 — —
fy0;web (MPa) 374.1 2.8 — —
E0;girder (MPa) 200,000 3.0 200,000 3.0

bgirder (-) 0.008 25.0 0.005 25.0

Connection fs;max [kN] 667 20.0 653 20.0

Fig. 4. Simply supported beam (Beam 2): comparison between experi-
mental results and mean probabilistic force-displacement response ob-
tained using different modeling hypotheses for the material parameters
uncertainty

(a)

(b)

Fig. 3. Beams used as benchmark applications: (a) simply supported
beam; (b) continuous beam (data from Ansourian 1981, 1982)
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FE used to discretize the structure (LN-0); and (3) a single normal
random variable for the entire structure (N-∞). The results ob-
tained from MCS for the three modeling assumptions are very sim-
ilar, except for a small deviation of the LN-0 case at large
deflections, and they are close to both the experimental and FOSM
results.

Fig. 5 shows the comparison of the experimental applied force-
midspan deflection response (i.e., push-down curve) and the mean
response (μ) as well as the mean response ± one standard
deviation (μ� σ) obtained numerically using the DDM-based
FOSMmethod with no spatial variability for all the material param-
eters (assumption affecting the FOSM estimate of the response
standard deviation as discussed previously). To illustrate the vari-
ability of the FE response simulation, the 100 realizations of the
midspan force-deflection response curves obtained through MCS
under the LN-∞ assumption are also plotted in Fig. 5. The pre-
dicted mean push-down curve is in very good agreement with the
experimental results. Except at very small values of the vertical dis-
placement, the experimental results are always contained between
the μ − σ and μþ σ push-down curves. The response uncertainty is
found to be small and of the same order of magnitude of the actual
COVs (obtained from tests on samples of materials that the beam
was made of) of the material parameters that most affect the struc-
tural response, namely fc and fy0.

Fig. 6 shows the numerical estimates of the standard deviation,
σP, of the applied force P (which is a response parameter in
the present displacement-controlled analysis) obtained by using
(1)DDM-based FOSManalysiswith no spatial variability (FOSM∞);
(2) DDM-based FOSM analysis with significant spatial variabil-
ity (FOSM 0); (3) MCS under the LN-∞ assumption; (4) MCS
under the LN-0 assumption; and (5) MCS under the N-∞
assumption. It is observed that the FOSM estimate of the response
standard deviation σP is significantly affected by the spatial vari-
ability of the material parameters. The response standard deviation
is significantly lower for the LN-0 case than for the LN-∞ and
N-∞ cases for deflections up to approximatelyh 50 mm and be-
comes larger for midspan deflections higher than 56 mm. The dif-
ferences between the LN-∞ and N-∞ cases are smaller, although
non-negligible, with the response standard deviation, σP, larger for
the N-∞ case than for the LN-∞ case. Notably, the standard
deviation of the applied force P decreases noticeably for midspan
deflections in the range between 23 and 28 mm. This phenomenon
is because, at approximately 23 mm of midspan deflection, the sim-
ply supported beam starts experiencing yielding of both the shear
connection (near the supports) and the steel beam (at midspan).

After the shear connection yielding and the steel beam yielding
spread along the SCC beam and across the steel beam section, re-
spectively, the uncertainties in the connection shear strength and
Young’s modulus of the steel beam provide smaller contributions
to the total response variability. This phenomenon results from a
drop of the absolute value of the sensitivity of the SCC beam re-
sponse to these two parameters in this range of response behavior
of the beam. The response standard deviation obtained using FOSM
analysis agrees well with the corresponding results obtained using
MCS up to deflections of 42 mm for the LN-∞ and N-∞ assump-
tions, and 58 mm for the LN-0 assumption. This finding is consis-
tent with other results reported in the literature (Barbato et al. 2010),
showing that FOSM analysis is accurate for low-to-moderate level
of material nonlinearity in the FE response.

For this specific example, the computational cost of the DDM-
based FOSM method is approximately three times that of a deter-
ministic FE analysis for the assumption of no spatial variability, and
approximately 16.5 times the computational cost of a deterministic
FE analysis for the assumption of significant spatial variability.
Thus, the DDM-based FOSM method is significantly more effi-
cient computationally than MCS, which requires 100 simulations
for a COV of 1–2% on the estimated mean and 7–8% on the esti-
mated standard deviation.

Nonsymmetric Two-Span Continuous Beam

The second benchmark problem considered is a nonsymmetric two-
span continuous beam [Fig. 3(b)] tested by Ansourian (1981) under
monotonic quasi-static loading and referred to as CTB1. This beam
has two spans of length 4.00 and 5.00 m, respectively, and is sub-
jected to a vertical concentrated load P applied at the midpoint
of the shorter span. The joist section is a European IPE200, and
the RC slab section is 100 × 800 mm2. Shear lag effects are also
neglected in this case. This benchmark example is particularly in-
teresting because it reproduces the main phenomena typically ob-
served in the ultimate strength analysis of SCC beams, such as
concrete softening in compression, concrete cracking in tension,
and high gradients of slip and shear force along the connection
(Dall’Asta and Zona 2002). The reader is referred to Ansourian
(1981) for all details regarding the geometry and material properties
of this specimen. The mean and COVof each of the material param-
eters for this example are given in Table 2. In this case, the mean
values of the material parameters were directly taken or derived
from information published in Ansourian (1981). Because neither

Fig. 5. Simply supported beam (Beam 2): comparison between experi-
mental results and numerical probabilistic force-displacement response

Fig. 6. Simply supported beam (Beam 2): comparison of the standard
deviation estimates of the applied force obtained using different mod-
eling hypotheses for the material parameters uncertainty
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the COV of the material parameters nor the results from the indi-
vidual material uniaxial and shear tests were published or recovered
by Ansourian, typical values suggested or used in the literature
were assumed for the COVs (Mirza et al. 1979; Mirza and
MacGregor 1979; Melchers 1999; Simões da Silva et al. 2009;
Ubejd Mujagi¢ and Easterling 2009).

The structure is discretized uniformly using 18 10-DOF elements
with five Gauss-Lobatto points each. As in the previous application
example, a quasi-static, monotonic, materially nonlinear-only analy-
sis of the beam structure is performed using the Newton-Raphson
incremental-iterative procedure in displacement-control mode with
the vertical displacement at the point of application of the load taken
as the controlled DOF; thus, closely mimicking the physical experi-
ment. The vertical deflection of the beam at the midpoint of the
shorter span (referred to as midspan deflection in the following)
is incremented from 0.0 to 53.0 mm, with increments of 0.5 mm.
The 53.0-mm value of midspan deflection corresponds to the exper-
imental failure of the physical specimen and is used as largest
midspan deflection value for the FOSM analysis. Thus, also in this
second benchmark, the midspan deflection is a deterministic vari-
able, whereas the applied force is a random variable obtained as
the opposite of the resisting force exerted by the FE model at the
controlled DOF.

Fig. 7 compares the experimental results and the mean response
obtained using FOSM analysis with the mean response obtained
through MCS based on 100 realizations of the set of all material
parameters modeled as random variables. As in the previous appli-
cation example, three different modeling assumptions for the un-
certainty of the material parameters (i.e., LN-∞, LN-0 and N-∞)
are considered in the MCS. These three uncertainty modeling as-
sumptions are admissible based on the incomplete statistical infor-
mation available. The mean response results obtained from FOSM
analysis and N-∞MCS practically coincide (with small differences
for deflections larger than 35 mm), whereas those obtained using
LN-∞ MCS and LN-0 MCS are slightly lower. Also in this exam-
ple, all the numerically estimated mean responses are very close to
the experimental results.

Fig. 8 shows the experimental applied force-midspan deflection
response (push-down curve) and the mean response (μ) as well as
the mean response ± one standard deviation (μ� σ) obtained nu-
merically using the DDM-based FOSM method assuming no spa-
tial variability for all the material parameters. To illustrate the
variability of the FE simulated response, the 100 MCS realizations

(under the LN-∞ assumption) of the midspan force-deflection re-
sponse curves are also plotted in Fig. 8. The analytically predicted
mean push-down curve is in excellent agreement with the exper-
imental results. Also in this case, the experimental results are con-
tained between the μ − σ and μþ σ push-down curves. These
results, as well as the corresponding results for the simply sup-
ported beam considered in the previous benchmark example, sug-
gest that the FE models adopted in this study, based on the mean
values of the material parameters, are able to capture very well the
actual load-deflection behavior of simply supported and continuous
SCC beams. For this application example, experimental data are
available only for the mean values of the material model parame-
ters, whereas the standard deviations are obtained from typical
values of the COV presented in the literature for these material
parameters. These COVs are significantly larger than those ob-
tained directly from experimental data in the previous benchmark
example. Thus, the numerically estimated response COV is signifi-
cantly larger than in the previous example.

Fig. 9 shows the numerical estimates of the standard deviation
of the applied force obtained by using (1) DDM-based FOSM
analysis under the assumption of no spatial variability; (2) DDM-
based FOSM analysis under the assumption of significant spatial
variability; (3) MCS analysis under the LN-∞ assumption;

Fig. 7. Two-span continuous beam (Beam CTB1): comparison be-
tween experimental results and mean probabilistic force-displacement
response obtained using different modeling hypotheses for the material
parameters uncertainty

Fig. 8. Two-span continuous beam (Beam CTB1): comparison
between experimental results and numerical probabilistic force-
displacement response

Fig. 9. Two-span continuous beam (Beam CTB1): comparison of the
standard deviation estimates of the applied force obtained using differ-
ent modeling hypotheses for the material parameters uncertainty
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(4) MCS analysis under the LN-0 assumption; and (5) MCS analy-
sis under the N-∞ assumption. The estimate of the response stan-
dard deviation obtained by using FOSM for the assumption of no
spatial variability almost coincides with the MCS LN-∞ and N-∞
results for deflections up to approximately 10 mm, and it is 35%
larger on average than the MCS LN-∞ and N-∞ results for deflec-
tions between 20 and 45 mm. For midspan deflections larger than
45 mm, at which the level of material nonlinearity in the response is
very high, the FOSM approximation for the assumption of no spa-
tial variability increases drastically with the midspan deflection
compared to the MCS results, indicating a significant loss of accu-
racy of the FOSM approximation that is unable to capture the
highly nonlinear dependency of the structural response on the
material parameters. The differences between the LN-∞ and N-∞
cases are small but non-negligible. Unlike in the first application
example, the MCS N-∞ standard deviation is smaller than the
MCS LN-∞ standard deviation over the entire range of midspan
deflections considered. The estimate of the response standard
deviation obtained by using FOSM for the assumption of signifi-
cant spatial variability almost coincides with the MCS LN-0 results
for deflections up to approximately 29 mm, whereas this FOSM
estimate increases drastically and departs from the MCS LN-0
results at larger midspan deflections, showing a significant loss
of accuracy of the FOSM approximation even more pronounced
than in the LN-∞ and N-∞ cases.

Fig. 10 shows the percent relative contributions (defined as
ðΔσ2

vÞij=σ2
v, where ðΔσ2

vÞij ¼ ρij · ð∂v=∂θiÞ · σi · ð∂v=∂θjÞ · σj,
i, j ¼ 1; 2; : : : ;m) of the different random parameters to the total
variance of the applied force as a function of the midspan deflec-
tion, under the LN-∞ assumption (Barbato et al. 2010). These re-
sults show that: (1) for small midspan deflections (lower than
10 mm), the response variability is controlled almost exclusively
by fs;max (which determines the initial stiffness of the shear con-
nection) (Ollgaard et al. 1971; Zona et al. 2006) and the stiffness-
related parameters Ec and E0; (2) after yielding of the steel beam
component and up to approximately 50 mm of midspan deflection,
parameter fy0 controls the response variability; and (3) for very
large midspan deflections (larger than 50 mm), parameters ε0 and
f0 (which are related to the concrete crushing behavior) together
with fs;max become dominant in controlling the response variability.
Also, the contribution to the response variability of the statistical
correlation of fc and f0 becomes also significant for very large

midspan deflections. The parameter relative contribution (for both
individual and pairs of correlated random parameters) to the re-
sponse variance is a valuable importance measure that is obtained
at a negligible computational cost as by-product of a FOSM prob-
abilistic response analysis (Barbato et al. 2010). Other similar im-
portance measures (also obtained as a by-product of a FOSM
probabilistic response analysis) are the tornado diagrams and the
response sensitivities normalized in a deterministic and/or probabi-
listic sense (Barbato et al. 2010).

For this second example, the computational cost of the DDM-
based FOSM method is approximately three times that of a deter-
ministic FE analysis for the assumption of no spatial variability, and
approximately 33 times the computational cost of a deterministic
FE analysis for the assumption of significant spatial variability.
Thus, the DDM-based FOSM method is computationally signifi-
cantly more efficient than MCS, which requires 100 simulations
for a COV lower than 2% on the estimated mean and lower than
8% on the estimated standard deviation. However, the computa-
tional cost advantage of using the DDM-based FOSM method
decreases almost linearly with the number of random variables
needed to discretize the random fields representing the material
model parameters.

Current Challenges in Probabilistic Nonlinear
Finite-Element Response Analysis

A crucial challenge faced with the combination of nonlinear FE
analysis and probabilistic response analysis is the issue of numeri-
cal convergence of the FE response analysis, which can be ham-
pered owing to material degradation (e.g., material softening
and/or brittleness). This issue is particularly serious when MCS
is used, because the simulation can produce combinations of
parameter values for which the FE analysis encounters severe
convergence difficulties. For example, in this study, among the
one hundred MCS realizations used for each case, convergence dif-
ficulties are experienced (1) in nine analyses for the LN-∞ case, 24
analyses for the LN-0 case, and two analyses for the N-∞ case
related to the Beam 2 benchmark; and (2) in 40 analyses for the
LN-∞ case, 45 analyses for the LN-0 case, and 35 analyses for
the N-∞ case related to the CTB1 Beam benchmark. These FE
analyses required the use of an adaptive stepping technique (with
increments of the controlled displacement reaching very small
values in several cases, e.g., nominal increment divided by 214 ¼
16,384), which can increase several-fold the computational cost of
a single FE analysis. This approach was computationally intensive
for the two small-scale benchmark structures considered in this
study, but would become unfeasible for large-scale real-world
structural systems made up of hundreds or thousands of compo-
nents. At the same time, discarding the MCS realizations that en-
counter convergence problems is not acceptable because it can
significantly bias the FE response statistics. In general, among
the subset of nonconverged realizations, distinguishing between
lack of convergence resulting from numerical issues or because
of physical failure of the structure analyzed can be a daunting if
not impossible task. Another challenge faced by the FOSM method
in capturing the statistics of the actual physical structural response
is the spurious high sensitivity of the FE response and/or response
sensitivities to numerical issues (e.g., numerical inversion of almost
singular stiffness matrices, discontinuities in the FE response sen-
sitivities owing to nonsmoothness of the response caused by
material state transitions from elastic to plastic or brittle strength
loss), which depend primarily on the numerical representation of
the material behavior. Smoothing techniques applied to material

Fig. 10. Two-span continuous beam (Beam CTB1): Percentage rela-
tive contributions of the different individual random parameters and
pairs of correlated random parameters to the variance of the applied
force (LN-∞ assumption)
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constitutive models have been shown to effectively reduce the
detrimental effects of some of the numerical issues mentioned
previously (Barbato and Conte 2006).

Conclusions

This study employs a probabilistic response analysis methodology
based on the use of the first-order second moment (FOSM) method
in conjunction with the direct differentiation method (DDM) for
response sensitivity computation to evaluate the variability of the
structural response of steel-concrete composite (SCC) beams. This
methodology is applied to compute the first-order and second-order
statistical moments of the response of two actual structural systems
(i.e., a simply supported SCC beam and a nonsymmetric two-span
continuous SCC beam) for which experimental data on the nonlin-
ear structural response are available. For the simply supported SCC
beam, additional data are also available on the actual variability of
concrete compressive strength and steel yield stress, which are two
of the parameters to which the structural response is most sensitive.
The DDM-based FOSM method results are compared with the
available experimental measurements for the structural response
and with the response statistics obtained using the computationally
more expensive Monte Carlo-simulation (MCS) method, consider-
ing the effects of different modeling hypotheses for the material
parameters uncertainty. For the examples considered in this paper,
the DDM-based FOSM method agrees very well with the MCS
method, for low-to-moderate levels of material nonlinearity in
the response when the uncertainty of the material model parameters
is moderate, and up to high levels of response nonlinearity when
the material parameters uncertainty is small. The inaccuracy of the
DDM-based FOSMmethod observed at high levels of material non-
linearity in the response is attributable to the increasingly nonlinear
dependency of the response on the random variables describing
the material parameters. Notably, for moderate-to-high response
nonlinearity, MCS can be affected by computational issues because
numerical convergence of the Monte Carlo realizations typically be-
comes more difficult and computationally demanding.

The DDM-based FOSM method is able to capture the effect of
the spatial variability of the material parameters on the approximate
structural response variance, but with a computational cost increas-
ing with the total number of random variables describing the
material parameters. Through MCS, it was found that, for the two
examples considered in this paper, the spatial variability of the
material parameters has a significant effect on the second-order
statistical moment (variance) of the structural response, whereas its
influence is negligible for the mean response. The FOSM method
cannot account for the specific probability distributions of the
material parameters. However, MCS shows that different material
parameter distributions have very small effects on both the first-
order and second-order statistical moments of the response of the
structures considered in this study. The results presented in this
paper, albeit obtained for a limited number of SCC beams, suggest
that for this structural typology the spatial variability of the material
parameters affects the variability of the structural response signifi-
cantly more than the distribution type of the random variables
describing the material parameters. Thus, when planning an exper-
imental test to evaluate the response variability of a given SCC
beam, it may be advisable to include material tests to evaluate
the spatial variability of the material parameters instead of increas-
ing the number of data points needed to estimate the distribution
type of the random variables. Regarding the required computational
time, the DDM-based FOSM method is significantly more efficient
than MCS for the application examples considered in this paper.

However, its cost increases linearly with the number of random
variables used to describe the random material properties for the
structural system of interest.
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