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This paper introduces an efficient methodology for assessing the seismic risk of structural systems
equipped with linear and nonlinear viscous damping devices while accounting for the uncertainties
affecting both seismic input and model parameters. The proposed methodology employs a combination
of efficient and accurate analytical and simulation techniques to estimate the probabilistic properties of
the structural response under a seismic input modeled as a non-stationary stochastic process.

The effectiveness of the proposed methodology is illustrated through a parametric study, with respect
to the dampers’ properties, of the performance of two adjacent steel buildings connected by linear and
nonlinear viscous dampers. The results of the study provide useful information regarding the accuracy
of the approximations introduced by the proposed reliability assessment approach, and the effectiveness
of the added dampers in reducing the system seismic risk.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades, the use of viscous and visco-elastic
dampers has become increasingly widespread in the design and
retrofit of civil structures excited by wind and earthquake loads,
due to the capability of these devices to mitigate undesirable
aspects of the structural response [1,2]. Experimental and analyti-
cal studies have demonstrated that viscous dampers placed inside
the buildings or between adjacent buildings permit to control and
significantly mitigate the motion amplitude, interstory drifts, and
absolute accelerations induced by earthquake actions [2–9].

The assessment of the seismic reliability of structures equipped
with viscous/visco-elastic damping devices is a complex task that
requires a probabilistic approach in order to rigorously account
for the uncertainties that characterize the seismic input (record-
to-record and intensity variability), as well as the properties of
the structural systems and of their models (model parameter
uncertainty (MPU)) [10–15]. Although stochastic simulation proce-
dures (e.g., direct Monte Carlo simulation (MCS) [12,13] or subset
simulation [16,17]) can be employed to solve this type of problem,
they usually require a very large number of analyses to obtain
accurate results when small failure probabilities need to be
estimated. Thus, when possible, analytical techniques based on
random vibration theory are preferred to direct stochastic simula-
tion techniques [18–23]. In fact, several methodologies available in
the literature employed analytical techniques for the probabilistic
assessment and reliability-based design of viscously damped sys-
tems [3–6,9]. However, the complexity of the analytical treatment
of this problem led to the adoption of numerous simplifications
concerning the reliability evaluation, the seismic input description,
and the uncertainty of the structural models. With regard to the
reliability evaluation, many existing procedures focused only on
the mean-square response of the buildings, without explicit
reliability considerations regarding the structural performance as
measured by the risk of damage and losses (see [9] for a compari-
son of different stochastic performance measures for stationary
response). Furthermore, only few studies considered the effects
on the system reliability of the statistical dependence among
different failure modes, albeit these effects can be very significant
[9]. With regard to the seismic input description, numerous studies
employed oversimplified stochastic models that neglect the
non-stationarity of earthquake ground motion. Finally, regarding
the uncertainty of the structural models, a significant portion of
the research performed in this field disregarded the effects of
MPU, which can have a non-negligible influence on the structural
performance [10–15].

This study presents a hybrid approach that combines efficient
analytical and simulation techniques for reliability analysis to
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estimate the seismic risk of structural systems equipped with lin-
ear or nonlinear viscous dampers. This approach accounts for the
correlation between different failure modes, the non-stationarity
of the earthquake ground motion excitation, and the effects on
system reliability of MPU. In the first part of the paper, the direct
reliability problem consisting in the evaluation of the seismic risk
is formulated consistently with modern performance-based
earthquake engineering (PBEE) frameworks, such as the Pacific
Earthquake Engineering Research Center (PEER) PBEE framework
[24,25]. Successively, the problem solution is presented for the
case of structural systems and performance levels for which the
hypothesis of linear structural behavior is satisfied with good accu-
racy. The effects of the seismic input uncertainty are taken into
account through random vibration techniques. In particular, in
the case of linear dampers, recently derived closed-form analytical
solutions [21] for the statistics of the stochastic structural response
are employed. In the case of nonlinear dampers, an existing
stochastic linearization technique is used to efficiently estimate
the response statistics [26,27]. In both the cases, a simulation
approach based on Latin hypercube sampling [28] is proposed to
account for the uncertainty in the model parameters.

The proposed methodology is applied in this paper to evaluate
the seismic risk of two adjacent steel buildings coupled by viscous
dampers. A parametric study is performed to investigate the influ-
ence of the damper properties and nonlinearity level on the risk
estimates. Comparisons with pertinent MCS results are made to
assess the accuracy of the proposed approach.

2. Formulation of the reliability-based assessment problem

2.1. Mean annual frequency of limit state exceedance based on the
PEER PBEE framework

The PEER PBEE framework [24,25] is a general probabilistic
methodology for the performance assessment of structures sub-
jected to seismic hazard. The aim of the framework is to evaluate
the mean annual frequency (MAF) of exceedance of a decision var-
iable (i.e., of a measurable attribute of a specific structural perfor-
mance that can be defined in terms of cost/benefit for the users
and/or the society). The computation of the decision variable is
disaggregated into the following four probabilistic analysis compo-
nents: (1) probabilistic seismic hazard analysis, which describes
the uncertainty of the ground-motion intensity measures (IMs);
(2) probabilistic seismic demand analysis, which describes the
uncertainty of the engineering demand parameters (EDPs) used
to monitor the structural response conditional on the IMs; (3)
probabilistic seismic damage analysis, which describes the uncer-
tainty of the damage measures (DMs) or limit states that can be
correlated with the chosen decision variable; and (4) probabilistic
seismic loss analysis, which describes the uncertainty of the deci-
sion variable. The reliability-based procedure developed in this
paper involves only the first three steps of the framework since it
provides the MAF of exceedance of a set of specified limit states
related to the building components (e.g., structural elements and
dampers). This MAF can be expressed as:

vDMðdmÞ ¼
Z

im

Z
edp

GDMjEDPðdmjedpÞ � jdGEDPjIMðedpjimÞj

� jdv IMðimÞj ð1Þ

in which vIM(im) denotes the MAF of exceeding a given value im of
the vector of IMs; GEDPjIMðedpjimÞ denotes the complementary
(joint) cumulative distribution function of the vector of EDPs,
EDP, conditional on IM = im; and GDMjEDPðdmjedpÞ denotes the
complementary (joint) cumulative distribution function of the vec-
tor of DMs, DM, conditional on EDP = edp. In this paper, for the IMs,
EDPs, and DMs, upper case letters denote random quantities, lower
case letters denote specific realizations, italic characters denote
scalar quantities, and bold characters denote vector quantities.

An important intermediate result of the PBEE procedure is given
by the following convolution integral:

PDMjIMðimÞ ¼
Z

edp
GDMjEDPðdmjedpÞ � jdGEDPjIMðedpjimÞj ð2Þ

which provides the probability of exceedance of the considered
damage limit states conditional on the seismic intensity. For each
damage limit state, Eq. (2) can be specialized as:

PDMi jIMðimÞ ¼
Z

edp
GDMi jEDPðdmijedpÞ � jdGEDPjIMðedpjimÞj ;

i ¼ 1;2; . . . ;Nls ð3Þ

in which DMi and dmi denote the i-th components of vector DM and
dm, respectively, Nls denotes the number of limit states, and
PDMi jIMðimÞ denotes the probability of exceedance of the i-th damage
measure (limit state) conditional on IM = im. Combining Eqs. (1)
and (2) gives the MAFs of exceedance of damage level DM = dm:

vDMðdmÞ ¼
Z

im
PDMjIMðimÞ � jdv IMðimÞj ð4Þ
2.2. Seismic risk assessment as a direct reliability problem

Seismic risk assessment consists in computing the probability
that a structure exceeds any specified damage level or limit state
(at a component and/or system level) during its assumed design
life, tL. In this type of direct reliability problems, the structural
properties of the building and the mechanical properties of the
dampers, as well as the seismic input characteristics at the building
site, are uncertain quantities for which a probabilistic description
is available. This paper considers discrete limit states only, using
a similar approach as that followed in numerous PBEE studies
available in the literature [25].

The evaluation of the reliability of a multi-component struc-
tural system requires selecting suitable limit states that are corre-
lated with the components’ performance. This study focuses on
limit states related to structural damage, and the interstory drifts
(defined as the difference in the lateral deflection measured at
the top and bottom of a story, and divided by the story height)
are employed as global EDPs [29,30]. Several guidelines and seis-
mic codes provisions [31,32] provide the values of the interstory
drifts corresponding to different limit states and/or structural per-
formance levels. It is noteworthy that other EDPs (e.g. absolute
floor accelerations) and limit states can be of interest in monitoring
the performance of buildings [9,33,34]. The performance of the
dampers is another important aspect in evaluating the system reli-
ability, since the proper and continuous operation of the damping
devices is critical in ensuring that the buildings achieve the desired
target performance level. In the literature, limits are considered for
the shear deformation that can be attained in visco-elastic damp-
ers [4,35], or for both the stroke (displacement) and force demand
in fluid viscous dampers [36]. The computation of the conditional
probability of failure of the components PDMi jIMðimÞ and of the sys-
tem P f jIMðimÞ requires solving a time-variant reliability problem by
accounting for the pertinent sources of uncertainty, e.g., random-
ness in the seismic input and MPU. The probability P f jIMðimÞ is a
special case of the probability PDMjIMðimÞ given in Eq. (2), which
is obtained when discrete limit states are considered. The plot of
P f jIMðimÞ versus IM is commonly called fragility curve in the liter-
ature [25].

The system failure probability conditional on IM = im, P f jIMðimÞ,
depends on the system configuration and on the statistical
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dependence among the component limit states [37,38]. Regarding
the system configuration, this study considers a series idealization
(i.e., the system failure is attained when any of the Nls component
limit states is exceeded), which is commonly used in the literature
for the type of problem under study [4–6]. With regard to the sta-
tistical dependence among the component limit states, stochastic
simulation techniques can accurately account for it when estimat-
ing P f jIMðimÞ [13]. Conversely, the analytical evaluation of the
system failure probability is usually extremely complex, and differ-
ent approximate solutions are commonly used [4–6,9]. In this
study, analytical solutions in conjunction with reliability bounds
are adopted and compared with MCS results.

Once P f jIMðimÞ is known, the MAF of system failure, vf, can be
computed by convolution with the seismic hazard curve as in
Eq. (4), i.e.,

v f ¼
Z

im
P f jIMðimÞ � jdv IMðimÞj ð5Þ

Furthermore, assuming that the occurrence of the event of system
failure can be described by a Poisson process, the value of the
system failure probability during the design life time, Pf ;tL

; can be
evaluated as

Pf ;tL
¼ 1� e�mf �tL ð6Þ
3. Efficient technique for seismic assessment of linear elastic
systems with dampers

This section illustrates an efficient combination of analytical
and simulation techniques that can be used to solve the direct
reliability problem defined by Eqs. (5) and (6). First, the system
equations of motion and the seismic input model are described.
Then, the analytical techniques for computing the conditional fail-
ure probability P f jIMðimÞ in the case of deterministic system and for
both linear and nonlinear dampers are illustrated. Finally, a simu-
lation technique for including the effects of MPU is proposed.

3.1. Equations of motion for linear systems with added dampers

The equations of motion of linear systems with added dampers
can be written as follows:

M � €uðtÞ þ C � _uðtÞ þ K � uðtÞ þ fdðtÞ ¼ �M � R � €ugðtÞ ð7Þ

in which u denotes the displacement vector of the free degrees-
of-freedom (DOFs); M, K, and C denote the mass, stiffness, and
damping matrices, respectively; fd(t) denotes the vector of the
resisting forces produced by the added dampers; R denotes the load
distribution matrix; €ugðtÞ denotes the vector containing the differ-
ent components of the input ground motion; t denotes time; and
a superposed dot denotes differentiation with respect to time.

The resisting force corresponding to the j-th damper (i.e., the
j-th component of fd(t)) depends on the relative displacement
and/or velocity at the two ends of the damper and can be
expressed as:

fdjðtÞ ¼ kdj � DujðtÞ þ cdj � jD _ujðtÞjaj � sign½D _ujðtÞ�;
j ¼ 1;2; . . . ;Nd ð8Þ

where Nd denotes the number of dampers; aj denotes the j-th dam-
per exponent (equal to one in case of linear dampers); DujðtÞ
denotes the relative displacement between the j-th damper’s ends
(which is linearly related to vector u); kdj and cdj denote the j-th
damper’s stiffness and viscous constant, respectively; and sign(�)
denotes the sign function.

In this paper, the input ground acceleration components are
modeled as separable non-stationary stochastic processes [21].
This analytical representation of the seismic input is defined by a
power spectral density (PSD) function of an embedded Gaussian
stationary process and by a deterministic time-modulating func-
tion. The description of the seismic input is completed by an appro-
priate seismic hazard function for the site, the definition of which
entails selecting the seismic IMs and computing the corresponding
MAF of exceedance vIM(im). The IMs selection should be driven by
sufficiency and efficiency criteria [39]. In addition, the IMs must be
easily related to the stochastic description of the input ground
motion process. While the proposed methodology is independent
of the IMs’ choice, a scalar intensity measure, IM, is considered
hereinafter for the sake of clarity and simplicity.

3.2. Seismic risk assessment for deterministic model properties

The i-th component fragility function PDMi jIMðimÞ given by Eq. (2)
is obtained in this paper as the solution of a first-passage reliability
problem for a scalar process, which can be expressed as follows [40]

PDMi jIMðimÞ¼1�P gijIMðt¼0jimÞ>0
h i

�exp �
Z tmax

0
hijIMðsjimÞ �ds

� �
;

i¼1;2; . . . ;Nls ð9Þ

in which hijIMðtjimÞ denotes the time-variant hazard function rela-
tive to the i-th limit state conditional on IM = im (i.e., the failure rate
at time t conditioned on having no failure before time t and on
IM = im), gijIMðtjimÞ ¼ fi � EDPijIMðtjimÞ denotes the i-th time-variant
limit state function conditional on IM = im, and fi denotes the i-th
component limit state threshold. For structural systems with at rest
initial conditions, the probability of survival at time t = 0 is
P½gijIMðt ¼ 0jimÞ > 0� ¼ 1.

Several analytical approximations are available in the literature
for hijIMðtjimÞ, e.g., the Poisson’s (P), the classical Vanmarcke’s
(cVM), and the modified Vanmarcke’s (mVM) approximations
[22,40]. The use of the P approximation of the time-variant hazard
function involves computing the time history of the variances of
the EDP components and of their first time-derivatives, as well
as the correlation coefficient between the EDP components and
their corresponding first time-derivatives [21]. In addition to these
quantities, the use of the cVM and mVM approximations requires
computing the time-variant first-order non-geometric spectral
characteristics that are needed to evaluate the bandwidth param-
eters of the components of EDP [21]. It is noteworthy that the addi-
tional computational cost of the cVM and mVM is justified by the
fact that these approximations are, in general, significantly more
accurate than the P approximation [14,22,23].

In this paper, the structural response statistics needed to ana-
lytically estimate the hazard function hijIMðtjimÞ are obtained using
the closed-form solutions developed in [21] for the case of linear
dampers, and the stochastic linearization technique described in
[27] for the case of nonlinear dampers. The analytical formulation
presented in [21] is based on state-space complex modal analysis,
which is suitable for both classically and non-classically damped
MDOF systems subjected to the earthquake model described
above, and on complex plane integration to compute the spectral
characteristics of the complex-valued modal response processes.
The stochastic linearization technique introduced in [27] involves
evaluating, at each time instant, the properties of equivalent linear
dampers, which minimize the mean square difference between the
nonlinear damper force and the equivalent linear damper force.
These equivalent properties depend on the system stochastic
response through the formula:

cd;eqjðtÞ ¼ cdj �
21þ

aj
2 � C 1þ aj

2

� �
ffiffiffiffiffiffiffi
2p
p � ra�1

D _uj
ðtÞ; j ¼ 1;2; . . . ;Nd ð10Þ
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Fig. 1. Schematic representation of adjacent buildings coupled by damping devices.
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where cd,eqj(t) is the equivalent viscous constant of the damper,
rD _uj

ðtÞ is the standard deviation of the relative velocity between
the j-th damper’s ends, and C(�) denotes the Gamma function.

The equivalent viscous constant of the dampers are evaluated
via an iterative procedure [27], which also provides the evolution
of the response covariance matrix. Based on this matrix, the
conditional probability of failure is evaluated here by assuming a
P approximation of the time-variant hazard function.

In this study, in order to balance the requirements of
computational efficiency and accuracy of the proposed assessment
procedure, upper and lower bounds of the conditional system fail-
ure probability P f jIMðimÞ are considered in conjunction with the
analytical estimates of the conditional component failure probabil-
ities PDMi jIMðimÞ. These bounds are obtained by introducing the
assumptions of independent and perfectly correlated component
failures as [37]:

Pub
f IMj ðimÞ ¼ 1�

YNls

i¼1

1� PDMi jIMðimÞ
� �

Plb
f IMj ðimÞ ¼ max

1�i�Nls

PDMi jIMðimÞ
� � ð11Þ

respectively.

3.3. Effects of model parameter uncertainty

In this study, the uncertainty affecting the parameters used to
define both the structural model (e.g., building geometry, stiffness,
damping, inertia, and damper properties) and the limit states (e.g.,
uncertain drift capacity and damper capacity) is referred to as
MPU. Similar to [14], the effects of this uncertainty are accounted
for by using the total probability theorem and the Latin hypercube
sampling technique [28]. The conditional probability of failure is
expressed as:

P f jIMðimÞ ¼
Z

X
P f jIM;Xðim;xÞ � f ðxÞ � dx ð12Þ

in which X denotes the vector of uncertain model parameters with
joint probability density function fX(x), and P f jIM;Xðim;xÞ denotes the
probability of failure conditional on X and IM = im .

Using the Latin hypercube sampling technique, samples of vec-
tor X are generated and employed to define a set of deterministic
models with deterministic limit states. For each of these sample
models and limit states, the conditional system failure probability
P f jIM;Xðim;xÞ can be computed via stochastic simulation or by using
an analytical approximation based on Eqs. (9) and (11). It is note-
worthy that MPU is non-ergodic in nature [24]. Thus, Eq. (5) still
holds when P f jIMðimÞ is computed using Eq. (12) in order to account
for MPU effects. However, as demonstrated in [24], the MAF of fail-
ure obtained from Eqs. (12) and (5) cannot be directly employed to
evaluate the system risk via Eq. (6), because this procedure would
violate the Poisson’s assumption on which Eq. (6) is based. This
study employs the following formula, for which the Poisson’s
assumption is still valid:

Pf ;tL
¼ 1�

Z
X

e�mf ðxÞ�tL � f ðxÞ � dx ð13Þ

The Latin hypercube sampling approach used in this study has some
advantages over other existing approaches that are commonly
employed to incorporate the effects of MPU, such as MCS or the per-
turbation method [11]. In fact, Latin hypercube sampling is more
efficient in spanning the sample space and, thus, requires fewer
samples than MCS to achieve the same level of accuracy. Further-
more, the accuracy of Latin hypercube sampling is not affected by
the values of the coefficients of variation of the uncertain model
parameters, in contrast with first- and second-order perturbation
approaches [41].
4. Application examples

In this section, the proposed methodology is applied to the seis-
mic risk assessment of two adjacent buildings coupled by using
linear and nonlinear viscous dampers. Three different cases are
considered: (1) buildings with deterministic properties coupled
by linear viscous/visco-elastic dampers, (2) buildings with uncer-
tain properties coupled by linear viscous dampers, and (3) build-
ings with deterministic properties coupled by nonlinear viscous
dampers. The case of buildings with uncertain properties coupled
by nonlinear viscous dampers is not presented here, due to space
constraints and because it does not provide additional insight into
the problem at hand when compared to the other cases considered
in this paper. For each of the three cases considered here, a para-
metric study is performed to investigate the effects on the seismic
risk of the damper properties (i.e., viscous constant for all cases,
stiffness constant for the case of deterministic buildings with linear
dampers, and damper exponent for the case of buildings coupled
by nonlinear dampers). The same seismic input is considered
throughout all the examples.

These application examples focus on the probability of exceed-
ing the Immediate Occupancy (IO) performance level in any of the
two buildings during their design life time of 50 years. For this
purpose, a series idealization is considered for the system, by
assuming that its failure corresponds to the exceedance of an inter-
story drift ratio (IDR) limit of 0.7% by any of the two buildings’ sto-
ries. This IDR value can be considered as a conventional limit for
the linear elastic behavior of multi-story steel buildings and for
their IO limit state, which corresponds to negligible structural
damage [31,32]. Thus, the assumption of linear elastic behavior is
deemed accurate for this specific application, since the fact that
the buildings may experience nonlinear behavior for high (and
rare) IM values does not introduce bias into the risk estimates
for the IO limit state.
4.1. Case study and seismic input description

The adjacent buildings considered in this study are two steel
moment-resisting frames with shear-type behavior (Fig. 1), whose
mechanical and geometric properties are taken from [14]. Building
A is an eight-story frame with constant floor mass, mA = 454,540 kg,
and stiffness, kA = 628,801 kN/m. Building B is a four-story building
with constant story mass, mB = 454,540 kg, and stiffness,
kB = 470,840 kN/m. The story heights are equal to 3.2 m.



94 E. Tubaldi et al. / Engineering Structures 78 (2014) 90–99
The motion of the coupled system is described by Eq. (7), in
which the mass, stiffness, and damping matrix are expressed as

M ¼ MA 0
0 MB

	 

;K ¼ KA 0

0 KB

	 

, and C ¼ CA 0

0 CB

	 

, respectively,

where Mi, Ki, and Ci denote the mass, stiffness, and damping matri-
ces of building i (i = A, B). Matrices CA (with dimensions 8 � 8) and
CB (with dimensions 4 x 4) describe the inherent buildings’ damp-
ing and are based on the Rayleigh model by assuming a damping
factor nA = nB = 2% for the first two vibration modes of each system.
The fundamental vibration periods of building A and B are
TA = 0.915 s and TB = 0.562 s, respectively.

Similar to [14,42], the stochastic seismic input used in the
application examples is modeled as a Gaussian stationary process
modulated in time through the Shinozuka-Sato’s function [43]

IðtÞ ¼ c � ðe�b1 �t � e�b2 �tÞ � HðtÞ ð14Þ

in which b1 ¼ 0:045ps�1, b2 ¼ 0:050ps�1, c ¼ 25:812, and HðtÞ is the
unit step function. A duration tmax ¼ 30 s is considered for the seis-
mic excitation. The PSD function of the stationary process is
described by the widely-used Kanai–Tajimi model, as modified by
Clough and Penzien [44], i.e.,

SCPðxÞ ¼ S0 �
x4

g þ 4 � n2
g �x2 �x2

g

x2
g �x2

h i2
þ 4 � n2

g �x2 �x2
g

� x4

x2
f �x2

h i2
þ 4 � n2

f �x2 �x2
f

ð15Þ

in which S0 denotes the amplitude of the bedrock excitation,
modeled as a white noise process; xg and ng denote the circular
frequency and damping factor of the soil, respectively; and xf and
nf denote the parameters describing the Clough–Penzien filter. The
following values of the parameters are used hereinafter:
xg ¼ 12:5 rad=s, fg = 0.6, xf ¼ 2 rad=s, and ff = 0.7. Fig. 2a shows
the PSD function corresponding to Eq. (15) for S0 ¼ 1 m2=s3.

The peak ground acceleration (PGA) is assumed here as IM. In
order to derive the fragility curves in terms of the selected IM,
the relationship between the parameter S0 of the modified
Kanai–Tajimi spectrum and the PGA at the site is assessed based
on the procedure reported in [14]. The site seismic hazard curve
(Fig. 2b) is:

mPGAðpgaÞ ¼ 6:734 � 10�5 � pga�2:857 ð16Þ

Thus, for the site of interest, a PGA value of 0.3 g (where g is the
gravity constant) corresponds to S0 ¼ 0:013 m2=s3 and to a proba-
bility of being exceeded equal to 10% in 50 years (i.e., it has a return
period of 475 years).
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Fig. 2. Input ground motion: (a) PSD function of the stationary proc
4.2. Seismic risk assessment for buildings with deterministic properties
and coupled by linear dampers

This section presents the case of deterministic buildings cou-
pled by linear dampers. These dampers connect the two buildings
at the first four floors and have the same properties at all floors.

Fig. 3 illustrates the stochastic response of the coupled adjacent
buildings for different values of cd, kd = 0 kN/m, and pga = 0.3 g.
The value cd = 0 kN s/m corresponds to uncoupled buildings. The
value cd = 6000 kN s/m corresponds to a very high dissipating
capacity of the connecting viscous dampers and a damping ratio
for the first vibration mode of the coupled system close to one.
For kd = 0 kN/m, the value cd = 1363.5 kN s/m (resulting in a damp-
ing factor for the first vibration mode of about 0.16) corresponds to
a 10% failure probability over 50 years for the coupled buildings.

Fig. 3a plots the time history of the standard deviation of the
IDR at the first story of building A and B (denoted respectively as
rIDR,A1 and rIDR,B1). The values of the IDR standard deviations are
highest at the first stories of the buildings, due to the shear-type
behavior and the uniform column stiffness along the building
heights. Thus, the failure of these stories is expected to provide
the largest contribution to the system failure probability. From
Fig. 3a, it is observed that coupling the buildings with dampers sig-
nificantly reduces both rIDR,A1 and rIDR,B1. However, an increase of
the viscous constant cd does not necessarily correspond to a
decrease of the standard deviation of the IDR response for both
buildings. In fact, the maximum values of rIDR,A1 and rIDR,B1 over
the seismic input duration are equal to 0.29% and 0.21%, respec-
tively, for cd = 1363.5 kN s/m, whereas they are 0.24% and 0.26%,
respectively, for cd = 6000 kN s/m.

Fig. 3b plots the time histories of the correlation coefficient
between the interstory drift of the first and eighth (top) story of
building A, qA1,A8, and the correlation coefficient between the
interstory drifts of the first story of each building, qA1,B1. The inter-
story drift of the first story of building A is highly correlated with
the interstory drift of the top story of the same building for any
value of cd. Conversely, the correlation coefficient between the
interstory drifts of the first stories of the two buildings depends
significantly on the values of cd. In fact, after a few seconds of exci-
tation during which the correlation coefficient is very high for any
value of cd, the interstory drifts become almost statistically uncor-
related for cd = 0 kN s/m and their correlation coefficients reach a
practically constant value that increases for increasing cd. This phe-
nomenon derives from the different dynamic properties of build-
ings A and B. For short periods of time after the beginning of the
excitation, the transient response of the two structures is domi-
nated by the properties of the excitation. After the first part of
the transient response, the two buildings tend to respond differ-
ently to the excitation. However, if the dampers connecting the
two buildings have a high cd value, the two buildings are forced
to respond as a single system.
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The seismic fragility and risk for the coupled buildings are
obtained here by employing the analytical estimates of the time-
variant hazard function presented in [22]. The accuracy of these
analytical estimates is verified by comparing the results with those
obtained through MCS, assumed as reference solution. The MCS
results are based on time history analyses of linear elastic finite ele-
ment models of the coupled buildings. A set of 10000 ground
motion records compatible with the input PSD is generated by using
the spectral representation method [45]. This number of samples
ensures accurate estimates of the MAF of system failure, vf (which
is approximately equal to 0.002 for Pf ;tL = 10% and tL = 50 years),
with a coefficient of variation approximately equal to 1%.

Fig. 4 compares the system fragility curves obtained analytically
and via MCS for the adjacent unconnected buildings (Fig. 4a) and
the buildings connected by dampers with cd = 6000 kN s/m
(Fig. 4b). The analytical estimates of P f jIMðimÞ are computed assum-
ing the two limit conditions of perfect correlation between all pairs
of component failures (hereinafter referred to as perfect correla-
tion assumption, which corresponds to the lower bound of the
system failure probability) and of statistical independence
between any pair of component failures (hereinafter referred to
as statistical independence assumption, which corresponds to the
upper bound of the system failure probability). Since MCS can
accurately account for the statistical dependence among the failure
modes, the exact value of the system failure probability according
to MCS is also reported in addition to the lower and upper bounds.

The results presented in Fig. 4 indicate that the additional
dampers are very effective in reducing the system vulnerability.
In particular, the median system capacity evaluated using MCS
(i.e., the PGA value corresponding to a 0.5 probability of failure)
increases from 0.19 g for cd = 0 kN s/m to 0.34 g for cd = 6000 -
kN s/m. For the specific problem considered here, the analytical
estimates of system fragility P f jIMðimÞ are usually higher (i.e., more
conservative) than the corresponding estimates obtained via MCS,
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Fig. 4. System fragility curves obtained analytically and via simulation: (a) unconnected
which are considered as the reference solutions. The P approxima-
tion is always conservative, while the mVM approximation is the
most accurate analytical solution among those considered in
this study. The accuracy of the analytical estimates is highest for
the case corresponding to cd = 6000 kN s/m, for which the two sys-
tems tend to behave as a single system. This observation is consis-
tent with the results of a previous study of the same authors on a
different problem involving the stochastic response of MDOF
dynamic systems [14], which showed that the analytical failure
probability approximations are most accurate when the response
is dominated by a single vibration mode [14].

Based on the MCS results, it is also found that the statistical
dependence among the component limit states can affect the sys-
tem failure probability estimate more than the approximation on
the hazard function. For example, Fig. 4 shows that the statistical
independence assumption, which is commonly made in computing
the system reliability (e.g., in [4,6]), significantly overestimates the
system risk. By contrast, the perfect correlation assumption is
more accurate (although unconservative), especially for high val-
ues of cd. In fact, the correlation between pairs of limit states
reflects the correlation between pairs of interstory drift responses.
Since the correlation between pairs of interstory drifts of the two
buildings increases for increasing cd (see Fig. 3), the correlation
between pairs of different component limit states is higher for
cd = 6000 kN s/m than for cd = 0 kN s/m. This phenomenon is also
observed in Fig. 4, in which the fragility curve evaluated via MCS
(which accounts for the actual statistical dependence among the
failure modes) is contained and almost equidistant from the two
MCS bounds for cd = 0 kN s/m, whereas it is almost coincident with
the lower bound for cd = 6000 kN s/m.

Fig. 5 reports the result of a parametric study performed to eval-
uate, for different damper properties, the effects of approximations
on the hazard function and failure modes correlation on the
failure risk estimates, Pf ;tL , for the two adjacent buildings. The
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values of the dampers’ viscous constant, cd, vary between 0 and
6000 kN s/m, whereas four different values of dampers’ stiffness
are considered in the range between kd = 0 kN/m (i.e., purely
viscous dampers), and kd = 5 � 106 kN/m (i.e., almost rigid visco-
elastic dampers).

It is observed that (1) the use of dampers to connect the adja-
cent buildings can improve significantly the buildings’ perfor-
mance, and (2) the viscous component of the damper is more
effective than the stiffness component in mitigating the seismic
risk. In fact, increasing kd improves the system performance only
for very low values of cd, while in general it results in an increase
of the risk. Furthermore, the value of the risk is practically insensi-
tive to the damper stiffness. Similar results are obtained also for
other values of kd (not reported here due to space constraints)
and are in agreement with results already available in the litera-
ture and based on the analysis of the mean square seismic
response of coupled adjacent buildings [3]. The lowest value of
Pf ;tL is achieved by employing dampers with purely viscous behav-
ior. In the neighborhood of this minimum value, the sensitivity of
Pf ;tL to changes in the values of cd is very small. Similar to the
results shown in Fig. 4, the results presented in Fig. 5 indicate that
the analytical estimates of Pf ;tL are more conservative than the esti-
mates obtained through MCS and their accuracy increases for
increasing values of cd. Also in this case, the mVM approximation
is the most accurate among the analytical approximations consid-
ered in this study. The perfect correlation assumption is more
accurate than the statistical independence assumption, especially
for high values of cd and kd for which the responses of the two
adjacent buildings are highly correlated (see Fig. 3b).

4.3. Seismic risk assessment for buildings with uncertain properties
and coupled by linear dampers

The effects of MPU on the system reliability of buildings cou-
pled by linear viscous dampers are studied by modeling the
dynamic properties of the two buildings as random variables. Fol-
lowing [10], the floor mass and story stiffness of each building are
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Fig. 5. Probability of exceeding the IO performance level in 50 years for adjacent b
kd = 20000 kN/m, and (d) kd = 5 � 106 kN/m.
assumed to follow lognormal distributions with mean values equal
to the corresponding values considered for the case of determinis-
tic buildings, and with coefficient of variation equal to 0.10 and
0.11, respectively. The damping ratios used to build the Rayleigh
damping matrixes for the two buildings are also modeled as ran-
dom variables with mean value equal to 2% and with coefficient
of variation equal to 65% [10]. Since perfect correlation is assumed
between the lumped floor masses and between the story stiffness
within the same building, the MPU is represented by 6 random
variables. Latin hypercube sampling is used to generate 50 samples
of structural models [28]. This sample number is sufficient to
account with accuracy for the variability of the uncertain parame-
ters, and ensures that the coefficient of variation of the estimates of
the failure probability is smaller than 5% for all cases considered.
The same sample models are used in correspondence of the
different IM values considered in the fragility analysis.

Fig. 6a compares the risk estimates for the buildings with
uncertain parameters coupled by linear viscous dampers and vary-
ing cd computed using Latin hypercube sampling in conjunction
with the analytical approach and MCS based on 10000 time history
analyses. The analytical approximations of the time-variant hazard
function provide accurate estimates of the risk, with errors of the
same magnitude as those observed for the buildings with deter-
ministic properties. Also in this case, the mVM approximation used
in conjunction with the perfect correlation assumption (i.e., the
lower bound of the system failure probability) provides the best
agreement with MCS results considering the actual statistical
dependence among the failure modes.

Fig. 6b compares the risk estimates obtained using MCS for the
cases of buildings with deterministic and uncertain properties (in
conjunction with Latin hypercube sampling for the case of uncer-
tain buildings). The trend for the seismic risk dependency on cd

is very similar for both the deterministic and uncertain cases. As
expected, the seismic risk estimates obtained by considering
MPU (denoted as PUNC

f ;tL
) are always higher than the corresponding

estimates obtained by neglecting MPU (denoted as PDET
f ;tL

). The
MPU increases the seismic risk by as much as 25% for low values
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of the damping constant when the actual statistical dependence
among the failure modes is considered, and as much as 45% when
the lower bound (perfect correlation assumption) is considered.

4.4. Seismic risk assessment for buildings with deterministic properties
and coupled by nonlinear dampers

This section reports the seismic risk assessment results for the
two adjacent buildings with deterministic properties coupled by
nonlinear viscous dampers.

Fig. 7 shows the variation with time of the values of the equiv-
alent viscous damping constant, cd,eq, corresponding to the damp-
ers that are coupling the adjacent buildings at the four floors,
with exponent a = 0.7 and viscous constant cd = 2500 kNs0.7/m0.7,
for the two cases of pga = 0.10 g (Fig. 7a) and pga = 0.30 g (Fig. 7b).

It is observed that the values of the equivalent viscous damping
are very high at the beginning and at the end of the seismic exci-
tation (when the seismic excitation is less intense), while they
are lower when the seismic excitation is most intense. At a given
time instant, the cd,eq values are lower for increasing floor number
(i.e., for increasing height). Furthermore, the equivalent damping
decreases for increasing seismic intensities. These trends can be
explained based on Eq. (10) by observing that (1) the equivalent
viscous damping decreases for increasing relative velocities
between the dampers’ ends, and (2) these relative velocities
increase for increasing seismic intensities and floor number.

Fig. 8a compares the analytical and MCS estimates of the risk of
exceeding the IO performance level for the adjacent buildings pre-
viously described and coupled at the first four floors by nonlinear
viscous dampers with equal properties, for a damper exponent
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Fig. 7. Time history of the equivalent viscous damping constant, cd,eq, of the dampers
(a) pga = 0.10 g, and (b) pga = 0.30 g.
a = 0.7 and for different values of the damping coefficient cd. The
MCS risk estimates are obtained by employing 100 ground motion
records compatible with the input model illustrated in Fig. 2. The
analytical estimates are close to the MCS estimates. The discrepan-
cies between the analytical and MCS risk estimates are similar to
those observed for the case of buildings coupled by linear viscous
dampers and are mainly due to two effects: (1) the stochastic lin-
earization approach, which usually leads to an underestimation of
the failure probability [20]; and the use of the P approximation for
the time-variant hazard function, which usually results in a overes-
timation of the failure probability [22]. Also in this case, the analyt-
ical risk estimates corresponding to the lower bound assumption
for the system reliability provide an approximation that is often
sufficiently accurate for engineering approximations, with the
exception of buildings coupled with dampers having a very low
value of the damper viscous constant, for which the analytical
approximations significantly overestimate the MCS results. It is
noteworthy that the computational cost of the analytical technique
is significantly lower than that of MCS (in this specific case, the
analytical technique requires less than 1% of the time required
by MCS).

In Fig. 8a, it is also observed that the variation of the system risk
with cd follows a trend similar to that observed for the case of
buildings coupled by linear viscous dampers. The value of cd that
minimizes the risk is lower for the case corresponding to a = 0.7
than for the linear case (i.e., a = 1.0). However, the minimum value
of the risk attained with the nonlinear viscous damper is very sim-
ilar to the corresponding value obtained with the linear dampers
(see Fig. 5). In Fig. 8b, the analytical risk estimates obtained for dif-
ferent values of a are plotted as a function of cd. It is observed that
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at the four floors (exponent a = 0.7 and viscous constant cd = 2500 kNs0.7/m0.7):
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the value of cd that minimizes the risk decreases for decreasing val-
ues of a, and that dampers with different exponents a provide
comparable performances in terms of maximum risk reduction.
5. Conclusions

This study presents a performance-based methodology for the
seismic assessment of buildings structures equipped with vis-
cous/visco-elastic damping devices. The proposed methodology,
which is consistent with modern performance-based earthquake
engineering frameworks, aims at computing the probability of
exceeding a target damage level during the design life time of the
system, while considering the uncertainty affecting both the seis-
mic input (i.e., record-to-record variability and uncertain intensity
level) and the model parameters. The methodology efficiently
employs Latin hypercube sampling to account for the uncertainty
in the model parameters, Poisson and Vanmarcke approximations
to estimate the time-variant failure probability, and recently
derived analytical techniques to evaluate the stochastic description
(variances, correlation coefficients, and non-geometric spectral
characteristics) of the structural response of the buildings.

The capabilities of the proposed methodology are illustrated by
analyzing two steel shear-type buildings coupled by viscous/visco-
elastic dampers with uniform properties along the height. In the
case of linear dampers, a parametric study performed considering
both deterministic and uncertain structures for different values
of damping constant, cd, and stiffness constant, kd, lead to the fol-
lowing observations: (1) the seismic performance of the system
is more sensitive to the viscous properties than to the stiffness
properties of the dampers; (2) significant variations of cd result
in small variations of the system seismic risk for a wide range of
cd values; (3) the correlation among the various failure modes
plays a significant role in the assessment of the system failure
probability; (4) the commonly adopted assumption of independent
component limit states can result in a significant overestimation of
the system seismic risk, in particular for buildings coupled by
dampers with high cd and kd values; (5) the accuracy of the analyt-
ical approximations of the failure probability depends on the sys-
tem dynamic properties; (6) in most of the cases considered, the
estimates obtained by employing the modified Vanmarcke’s
approximation for the hazard function and by assuming perfect
correlation between all pairs of failure modes are sufficiently
accurate for engineering purposes; and (7) the effects of model
parameter uncertainty on the seismic risk estimate can be signifi-
cant and should be included in the risk assessment.

The proposed methodology is also applied to the case of nonlin-
ear viscous dampers connecting the adjacent buildings with deter-
ministic properties, and the following conclusions are drawn: (1)
the analytical stochastic linearization technique, combined with
the methodology proposed in this study, yields risk estimates with
an accuracy similar to that achieved in the case of buildings cou-
pled with linear viscous dampers; (2) the value of the nonlinear
dampers’ viscous constant that minimizes the risk decreases for
decreasing values of the velocity exponent; and (3) the use of non-
linear viscous dampers permits to achieve seismic risk reductions
similar to those achieved by employing linear viscous dampers.

It is noted here that these conclusions hold only for the specific
systems analyzed in this paper. Further studies are required to
investigate the accuracy of analytical techniques, stochastic linear-
ization approaches, and time-variant hazard function approxima-
tions when they are combined for the evaluation of the seismic
reliability of structural systems.
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