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A B S T R A C T

This paper investigates the statistics of the pressure coefficients and their peak factors in hyperbolic paraboloid
roofs that are commonly used in tensile structures. The experimental peak factor statistics, estimated using
pressure coefficient time histories experimentally measured in wind tunnel tests, were compared with the cor-
responding peak factor statistics estimated through the use of six analytical models available in the literature,
namely the Davenport, classical Hermite, revised Hermite, modified Hermite, Translated-Peak-Process (TPP),
and Liu’s models. The basic assumption of the TPP model, i.e., that the pressure coefficient local peaks follow a
Weibull distribution, was validated and was used to estimate analytically the peak factors’ quantiles. Different
time history durations and different error measures were also considered. The non-Gaussian properties of the
pressure coefficient processes were characterized at different roof locations for different wind angles of attack. It
was found that: (1) the region of non-Gaussianity is significantly affected by the wind angle; (2) as expected, the
Davenport model underestimates the peak factor mean and standard deviation in regions of high non-
Gaussianity; (3) the modified Hermite model provides the best estimates overall of the peak factor mean; and (4)
the TPP model provides the best estimates overall of the peak factor standard deviation. In addition, the
modified root mean squared error was found to provide the most reliable assessment of the analytical models’
accuracy among the different error measures considered in this study.

1. Introduction

Tensile structures are widely used for hyperbolic paraboloid roofs
(HPRs). This structural typology is frequently used for multi-functional
buildings that require large interior open spaces [1], since they allow
covering extremely large spans (up to 150m, as for example The Khan
Shatyr Entertainment Centre in Kazakhstan, completed in 2010)
without intermediate pillars in a cost-effective manner. In addition,
they are lighter than other structural typologies for similar spans and,
thus, permit a wider selection of design solutions.

These structures present the unique feature that their load-bearing
elements (i.e., cables and membranes) sustain pure tension and, thus,
resist very efficiently external loads [2–4]). These load-bearing ele-
ments are very flexible and generally experience large deflections.
Thus, the initial structural equilibrium configuration needs to be opti-
mized through the appropriate distribution of permanent loads and a
careful selection of the geometric shape. The most commonly used
shape for tensile structures is the hyperbolic paraboloid, which has
been employed in many structures around the world, e.g., the Olym-
piastadion in Munich, Germany (designed by Otto Frei and completed
in 1968) and the Denver Union Station roof in Denver, CO (USA)

(completed in 2013). The hyperbolic paraboloid is an elementary
double curvature surface, nowadays usually realized by means of two
series of parallel cables, one series oriented upward and the other
downward. For load combinations controlled by gravity loads (e.g.,
self-weight, dead and snow loads), the upward cables act as load-
bearing cables, whereas the downward cables are stabilizing cables.
However, under suction due to wind loads, the upward cables provide
the stabilizing action, whereas the downward cables resist the wind
loads.

Because of their lightness and deformability, the stability of tensile
structures and in particular of hyperbolic paraboloid cable nets is ex-
tremely sensitive to their aerodynamic and aeroelastic response under
wind actions. However, knowledge of these aerodynamic and aero-
elastic behaviors is limited [2]. In addition, existing technical codes
provide design guidelines only for static loading conditions and/or
temporary structures [5–7]. These code prescriptions are backed up by
several manuals of practice, which examine in depth several aspects
related to the design of tensioned fabric roofs [8,9]. In this context, the
European Network for Membrane Structures “TensiNet” developed the
TensiNet Design Guide [10], which is widely considered the state-of-
the-art guide for the design of tensile structures and also provides a few
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examples of aerodynamic wind actions on tensile structures [4].
It is noted here that HPRs have been used in the past also for low-

flexibility shell structures made of light reinforced concrete (e.g., the
Olympic Saddledome in Calgary and several buildings designed by
Mexican architect Felix Candela [11]), and for medium-flexibility lat-
tice structures constructed with plywood [12]. For these stiffer struc-
tural typologies, the aerodynamic behavior is predominant, whereas
the aeroelastic behavior has a smaller influence on the structural de-
sign. For flexible HPRs consisting of tensile structures, both aero-
dynamic and aeroelastic behaviors are equally important and their
characterization for design purposes requires an iterative two-phase
approach in which the results of two separate analyses (performed
numerically or experimentally in wind tunnels) are interdependent
[13]. However, the pressure coefficients can be accurately estimated
using rigid models in wind tunnel tests even for flexible HPRs, since the
deflections of well-designed structures need to satisfy code require-
ments and are generally too small to affect the pressure coefficients
[14].

The importance of the aerodynamic behavior of HPRs has been re-
cognized in a few recent studies that investigated the dynamic behavior
[14–18] and the distribution of pressure coefficients on different geo-
metries [19–26]. It is noteworthy that peak pressure coefficients
(usually expressed in terms of peak factors) are crucial to estimate peak
loads [27], which for this type of structure could be related to local and
global critical conditions. In addition, modern performance-based re-
liability design approaches require the accurate estimation of extreme
wind loads and their distribution [28–30].

In principle, the peak factor’s distribution can be obtained based on
the classical extreme value theory [31]. If the process is Gaussian, the
Davenport equations provide satisfactory estimates of the mean and
standard deviation of the peak factor [32,33]. If the process is non-
Gaussian, no exact solution exists to predict mean and standard de-
viation of the peak factors. In general, using a Gaussian approximation
yields non-conservative peak factor values when applied to non-Gaus-
sian processes [34,35].

Several analytical models have been proposed in the scientific lit-
erature to predict non-Gaussian load effects. Kareem and Zhao [34]
proposed an analytical expression for the mean of non-Gaussian peak
factors using a moment-based model [31] based on the concept of non-
Gaussian translation process [36] with a cubic Hermite polynomial
transformation. Winterstein et al. [37] proposed a modification of the
Davenport equation for the non-Gaussian peak factor mean by in-
cluding the effects of clustering. Sadek and Simiu [38] proposed an
automated mapping procedure to estimate the peak distribution of
wind-induced non-Gaussian internal forces on low-rise buildings by
using a database-assisted design software. This mapping procedure re-
quires identifying an analytical marginal probability distribution for the
time series of interest through numerical fitting of the distribution
parameters. However, the Sadek–Simiu method has been applied only
to non-Gaussian processes with an underlying marginal gamma dis-
tribution [39–43].

Kwon and Kareem [27] derived an analytical solution for the non-
Gaussian peak factor standard deviation based on the Hermite model
and proposed a revised Hermite model and a modified Hermite model
for estimating the mean and standard deviation of non-Gaussian peak
factors. The revised Hermite model is based on the optimal parameters
of a four-moment cubic Hermite polynomial transformation [44];
however, this model has some validity limitation regarding the specific
ranges of the skewness and kurtosis of the process. The modified Her-
mite model is based on an equivalent statistical cubicization procedure
[45,33] and requires solving of a system of coupled nonlinear equations
that depend on the skewness and kurtosis of the process. Huang et al.
[42] proposed the Translated-Peak-Process (TPP) model to estimate the
local peak distribution, peak factors, and quantiles of peak extremes.
The TPP model is a modification of the Sadek-Simiu point-to-point
mapping procedure, which assumes a Weibull distribution for the local

peaks of non-Gaussian process’ time histories. The TPP model was va-
lidated by comparing the analytical estimates with wind-tunnel pres-
sure experimental results for a tall building. Ma and Xu [46] proposed a
moment-based Johnson transformation method in conjunction with a
Gumbel distribution assumption to estimate the statistics of wind
pressure peak factors. The results of this method were validated
through a comparison with the peak factors obtained from long-dura-
tion pressure records measured in wind-tunnel tests on the model sur-
faces of a high-rise building. It is noted here that, while there is an
agreement in the literature that the Davenport model tends to under-
estimate (sometimes significantly) the mean value of the peak factors,
there is no agreement on a single best model for all structures, with
different versions of the Hermite model that seem to perform better for
roof of low-rise buildings [27,42,47], and other approaches that seem
to be preferable for the vertical sides of tall buildings [42,46].

Validation of the peak statistics’ estimation models available in the
literature is extremely limited for HPRs. Ding and Chen [21] compared
the accuracy of various methods for extreme value analysis, (i.e., the
peaks-over-threshold method, the average conditional exceedance rate
method, and the translation process method with various translation
models, including the Hermite model) for select pressure taps’ record-
ings obtained from a wind tunnel test on a saddle-type HPR. Liu et al.
[23] investigated different statistics of dynamic pressures on a saddle-
type HPR, as well as the dependence of these statistics on different
turbulence profiles. They observed that the peak factors in the flow
separation regions presented a significant non-Gaussian behavior and
that moment-based Hermite estimates were accurate only for mild non-
Gaussianity. Liu et al. [24] proposed a new version of the Hermite
model, in which modified moments of the original process are used to
estimate separately the means of positive and negative peak factors.
This model (referred to as the Liu’s model hereafter) was verified
through a comparison with the peak factors of wind pressures measured
in wind tunnel tests on a large-span saddle-type roof. It is noteworthy
that the roof considered in [23,24] is representative only of HPRs with
linear edges (i.e., inclined at 45° with respect to the sagging and hog-
ging directions of the roof). The extreme values of the pressure coeffi-
cients on HPRs are significantly affected by turbulence [23] and roof
shape [19,20]. However, information on appropriate ranges and/or
models for HPRs is lacking in current technical standards and design
codes [48–56]. In addition, there is a need for a detailed comparison of
the different analytical models available in the literature in terms of
their accuracy in estimating the statistics of wind pressure peak factors
for HPRs. It is also noted that, while many studies available in the lit-
erature investigate the accuracy of analytical models for individual
wind pressure recordings (i.e., single pressure tap and single duration),
only few of them investigate the overall accuracy of these models for a
given surface, e.g., [42,46] for the vertical sides of tall buildings, and
[47] for the roof of low-rise buildings. Moreover, in these investigations
different types of errors have been used to quantify the accuracy of
different models, and it is not immediately apparent how the results
obtained using different error definitions can be compared. Finally, the
authors of the present paper were not able to identify studies that take
into consideration the effects of different durations of the wind pressure
recordings.

Based on an extensive wind-tunnel experimental campaign, the re-
search presented in this paper investigates in detail the statistics of the
peak factors in HPRs, as well as the non-Gaussian properties of the peak
factors as functions of the position on a square HPR and the relative
direction of the wind. This study also investigates the overall relative
accuracy of different analytical models for the estimation of peak factor
statistics when compared with experimental wind tunnel measurements
on a scaled model of a building with a square HPR. This accuracy is
investigated for different lengths of the pressure time histories and for
different definitions of error.
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2. Research relevance

This study provides several new contributions to the field of
Structural Wind Engineering. In particular, it provides a better under-
standing of the Gaussian and non-Gaussian behavior of the local pres-
sure coefficient processes on HPRs, as well as the effect of non-
Gaussianity on the peak factor’s statistical moments for this structural
geometry. This understanding is a necessary step toward the develop-
ment of modern design guidelines for tensile structures using hyper-
bolic paraboloid shapes. This study also develops a better under-
standing of the effects of different time durations with respect to the
accuracy of different analytical models for the estimation of the peak
factor’s statistics. The knowledge of the different models’ performance
over different time durations allow the identification of which models
can be reliably used to extrapolate the peak factor’s statistics beyond
the time durations that are compatible with specific wind tunnel tests.
Finally, to the best of the authors’ knowledge, this study presents the
first careful comparison of different error measures used to compare the
performance of different analytical models. The identification of an
appropriate error measure, particularly when considering average er-
rors over an entire surface equipped with numerous pressure taps in
wind tunnel tests, can provide important guidance for future experi-
mental and numerical studies to investigate the statistics of pressure
coefficients and peak factors for different surface geometries.

3. Description of the model geometry and wind tunnel tests

Wind tunnel testing was carried out in the CRIACIV’s open circuit
boundary layer wind tunnel in Prato, Italy [19], with a test chamber
size 2.3m×1.6m. The test used in this research was performed on a
square wood model of HPR with the following geometric parameters:
L1= L2= 80 cm=model lengths in the sagging (upward curvature)
and hogging (downward curvature) directions, respectively (corre-
sponding to the cable spans of the roof); f1= 2.67 cm=model sag in
the sagging direction; f2= 5.33 cm=model sag in the hogging direc-
tion; H1= 13.33 cm=height of the lowest roof point in the sagging
direction; and H2= 21.33 cm=height of the highest roof point in the
hogging direction (Fig. 1). It is observed that this model is different
from that considered in [23,24], because it has curved edges instead of
linear edges, i.e., the sides of the square plan coincide with the roof’s
sagging and hogging directions.

The wind directions considered in the wind tunnel tests are in-
dicated in Fig. 1. The direction corresponding to a wind angle of attack
θ=0° is parallel to the hogging direction, whereas the direction cor-
responding to θ=90° is parallel to the sagging direction of the roof.

A picture of the rigid wood model tested in the wind tunnel is shown
in Fig. 2. The wood model was fitted with 181 pressure taps on the
lateral surfaces and 89 pressure taps on the roof. All pressure taps were
connected to pressure scanners through polytetrafluoroethylene tubes,
calibrated to obtain a flat frequency response in the range of interest
(from 0 to 100 Hz).

The roof pressure taps were distributed according to the map shown
in Fig. 3, which also shows five different significant roof portions, re-
ferred to as zone A through zone E. Zone A is the edge detachment zone
for θ=0°, zone B is the edge detachment zone for θ=90°, zone C

represents the roof edge parallel to zone B, zone D represents the roof
edge parallel to zone A, and zone E corresponds to the central portion of
the roof. The wind tunnel tests were performed with an average wind
speed of 16.7m/s at a height of 10 cm, a sampling frequency equal to
252 Hz and an acquisition time T0= 30 s. The recording duration cor-
responds to an equivalent-time duration of approximately 30min when
considering a scale 1/100 for the physical model with respect to a full-
scale structure. Additional information on the test setup and results can
be found in [19], where the average pressure coefficients on the roof
and walls were presented for several geometrical models of HPRs. The
experimental results of relevance for the present study are reported in
the following section of this paper.

4. Experimental results

Results based on the experimental campaign described in [19,22]
are shown in Figs. 4–7. Figs. 5–7 report relevant statistics of the wind
tunnel experimental results for θ=0°, 45°, and 90°, respectively, cal-
culated over the entire duration of the recorded time-histories, i.e., for
T0= 30 s, by assuming that the underlying process is stationary. In
particular, the different subfigures present the mapping for all pressure
taps of the following pressure coefficient’s statistics: (a) mean, μcp
(previously reported in Rizzo et al. [19] but repeated here for the sake
of completeness); (b) standard deviation, σcp; (c) skewness coefficient,
γcp; (d) excess kurtosis, κcp; (e) mean zero-crossing rate, ν0 (obtained as
the average between the total up-crossings and down-crossings of the
zero level divided by the record duration, e.g., see [21,57]); and (f)Fig. 1. Geometry of the hyperbolic paraboloid model.

Fig. 2. In-scale wind tunnel physical model.

Fig. 3. Pressure taps’ location and zone identification on the HPR.
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peak factor, gT0. Standard deviation, skewness coefficient, and excess
kurtosis are scaled up by a factor equal to 10 for the sake of pre-
sentation clarity.

In this study, positive values of the pressure coefficients correspond
to suction (i.e., to a pressure lower than the static pressure of the un-
disturbed wind flow, p0). Thus, the time variant pressure coefficient at
the i-th pressure tap (i=1, …, 89) is given by:

=
−

c t
p p t

ρ V
( )

( )
·

p i
i

m
,

0
1
2

2
(1)

where p t( )i denotes the wind pressure measured at time t for pressure
tap i on the roof surface, ρ denotes the air density, and Vm denotes the
mean speed of the undisturbed wind flow. It is noted here that higher-
order statistical moments (i.e., skewness and excess kurtosis) have
higher variability than lower-order statistical moments (i.e., mean and
standard deviation), particularly for non-Gaussian processes [58]. This
phenomenon is related to the need to achieve approximate stationarity
of the underlying process in order to obtain reliable estimates of the
statistical moments. In order to identify potential inaccuracies in the
estimates of higher-order moments, the variability of these statistical
moments was investigated as a function of the duration of the time
interval over which they were estimated. For all pressure taps and all
directions considered in this investigation, it was found that in almost
all cases: (1) the pressure coefficient’s means and standard deviations
converged before 5 s of recorded time histories, (2) the pressure coef-
ficient’s skewness converged before 22 s of recorded time histories, and
(3) the pressure coefficient’s excess kurtosis converged before 27 s of
recorded time histories. Fig. 4 shows the values of the pressure coeffi-
cient’s mean, standard deviation, skewness, and excess kurtosis as
functions of the experimental record’s time duration for two re-
presentative pressure taps (i.e., pressure taps 11 and 5 for wind angles
θ=0° and 90°, respectively). Based on these results, it is concluded that
the values of the pressure coefficient’s statistical moments (in parti-
cular, skewness and excess kurtosis) correspond to the converged con-
stant values for the underlying stationary processes.

It is observed that the mean pressure coefficients assume positive
values at all locations for all three wind angles of attack, i.e., the wind
action on the roof overall correspond to a suction force. However, for a
few pressure taps, negative values of the pressure coefficients (i.e.,
pressures that are higher than p0) were recorded for short portions of

the time histories. With the exceptions of mean and standard deviations
of the pressure coefficients, all calculations were performed after the
signals were subtracted from their corresponding mean values and
normalized by their corresponding standard deviations (to obtain a
zero-mean process with unit standard deviation, see, e.g., [27]). The
experimental results are presented in the following subsections for each
of the considered wind angles of attack.

4.1. Statistics of pressure coefficients for wind angle of attack θ = 0°

For θ=0°, the mean pressure coefficients vary significantly with
the location of the pressure tap, with values ranging from 1.332 to
0.192 (Fig. 5a). The values of the mean pressure coefficients are highest
along the edge detachment zone A, after which they drop immediately
to low values, slightly increase toward the middle of the roof and then
decrease again to the lowest values in zone D. The standard deviations
of the pressure coefficients assume their highest values in zone A with
the maximum value equal to 0.367, their intermediate values in zones B
and C, and their lowest values in zones D and E, with the minimum
value equal to 0.040 (Fig. 5b).

The skewness coefficient (Fig. 5c) and excess kurtosis (Fig. 5d) ex-
hibit a very similar trend, i.e., they are generally highly correlated. In
fact, they assume their highest positive values toward the middle of
zones B and C (1.486 for the skewness coefficient and 7.236 for the
excess kurtosis, respectively), intermediate positive values in the re-
minder of zones B and C as well as in zone A, and low-magnitude po-
sitive or negative values in zones D and E (with the minimum values
equal to −0.098 for the skewness coefficient and−0.374 for the excess
kurtosis, respectively). According to [59], the roof regions where the
pressure coefficient process is non–Gaussian are identified by γ| |cp >0.5
and/or κ| |cp >0.5. Based on this criterion and the results reported in
Fig. 5c and d, the considered process is non-Gaussian in most of the
pressure taps located in zones A, B, and C.

The mean zero-crossing rate presents a smaller variability than
other statistics, with the maximum and minimum values equal to
15.989 Hz and 8.364 Hz, respectively (Fig. 5e). The largest values for ν0
are observed in zones A, B, and C. The peak factors show a trend similar
to that of the mean zero-crossing rate. In this case, the largest values for
the peak factors (with the maximum value equal to 10.298) are ob-
served near the middle of zones B and C, i.e., near the highest portions
of the roof (Fig. 5f), which correspond also to the zones with the largest

(a)  (b) 

Fig. 4. Values of the pressure coefficient’s mean, standard deviation, skewness, and excess kurtosis as functions of the experimental record’s time duration: (a)
pressure tap #11 for θ=0°, and (b) pressure tap #5 for θ=90°.
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(a) (b) 

(c) (d) 

(e) (f) 
Fig. 5. Statistics of wind pressure coefficients for θ=0°: (a) mean, μcp; (b) standard deviation (scaled up by 10), σcp; (c) skewness coefficient (scaled up by 10), γcp; (d)

excess kurtosis (scaled up by 10), κcp; (e) mean zero-crossing rate, ν0 (Hz); and (f) peak factor, gT0.
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(a) (b) 

(c) (d) 

(e) (f) 
Fig. 6. Statistics of wind pressure coefficients for θ=45°: (a) mean, μcp; (b) standard deviation (scaled up by 10), σcp; (c) skewness coefficient (scaled up by 10), γcp;

(d) excess kurtosis (scaled up by 10), κcp; (e) mean zero-crossing rate, ν0 (Hz); and (f) peak factor, gT0.
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(a) (b) 

(c) (d) 

(e) (f) 
Fig. 7. Statistics of wind pressure coefficients for θ=90°: (a) mean, μcp; (b) standard deviation (scaled up by 10), σcp; (c) skewness coefficient (scaled up by 10), γcp;

(d) excess kurtosis (scaled up by 10), κcp; (e) mean zero-crossing rate, ν0 (Hz); and (f) peak factor, gT0.
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values of the skewness coefficient and excess kurtosis. Relatively large
values of the peak factors (in the range 4.0–6.5) are observed in the
remainders of zones B and C, in zone A, and in the portion of zone E
immediately near to zone A. The peak factors assume values close to 3.5
in most of zone E and in zone D, i.e., in the roof region where the
process describing the pressure coefficient can be considered Gaussian.
It is noteworthy that a value of 3.4 to 3.5 for the peak factor is often
used in design applications [52], based on the assumption that the
underlying process is Gaussian. The observed maximum and minimum
values of the peak factor are equal to 10.298 and 2.987, respectively.

As expected from the geometry of the roof and the wind flow, the
trends for all the considered statistics are almost symmetric with re-
spect to the centerline of the roof that is parallel to the hogging di-
rection. It is also observed that non-Gaussianity appears to be not ne-
cessarily correlated with the magnitude of the pressure coefficients’
mean and standard deviation.

4.2. Statistics of pressure coefficients for wind angle of attack θ = 45°

For θ=45°, the mean pressure coefficients are slightly higher than
those for θ=0° and vary between 1.607 and 0.161 (Fig. 6a). The
highest values of the mean pressure coefficients are observed near the
detachment zone along the hogging direction (zone B and part of zone
E). The maximum value is reached at the highest point of the roof in
zone B. Zone A contains the intermediate values of the mean pressure
coefficients, whereas zones C, D, and E have smaller values.

The standard deviations of the pressure coefficients assume their
highest values also in zone B and part of zone E, with the maximum
value equal to 0.491 observed at pressure tap #64, i.e., in zone E next to
the pressure tap located at the highest point of the roof (Fig. 6b). The
standard deviations of the pressure coefficients assume intermediate
values in zone A and smaller values in the remainder of the roof, with
the minimum value equal to 0.035.

The skewness coefficient assumes its highest values near the lowest
point of the roof from the side of attack for the wind, i.e., toward the
middle of zone A and the neighboring portion of zone E, as well as at
the far corner of zone B (Fig. 6c). The maximum value is equal to 1.299
and is observed at pressure tap #50. Several pressure taps in zone D and
E have negative skewness coefficients, with values as low as −0.529.
The excess kurtosis assumes large values in zone B with the exclusion of
the corners and in the middle of zones A and (in minor measure) D
(Fig. 6d). The maximum value is 4.744 and is observed at pressure tap
#27. Lower values are generally observed in zone D, where negative
values are measured at a few pressure taps. However, the lowest value
of−0.601 is achieved at pressure tap #64, in zone E next to zone B. It is
also observed that a significant portion of the pressure taps of the roof
have excess kurtosis values larger than 0.50, which is the conventional
value suggested in [59] above which the pressure coefficient process
can be considered non-Gaussian.

The mean zero-crossing rate presents larger values around the edges
defined by zones A, B, and C, with values as high as 18.038 Hz, and
smaller values elsewhere, with values as low as 10.278 Hz (Fig. 6e). The
peak factors assume values higher than 4.0 in most of the pressure taps,
with the highest values observed in zone C and the maximum value
equal to 10.570 achieved at pressure tap #27 (Fig. 6f). The minimum
value of the peak factor is equal to 3.319 and is measured at pressure
tap #64 in zone E. For this wind angle of attack, the relatively high
values of the peak factors seem to confirm the previous observation,
based only on the values of skewness coefficient and excess kurtosis,
that the pressure coefficient process is non-Gaussian on most of the
roof.

4.3. Statistics of pressure coefficients for wind angle of attack θ = 90°

For θ=90°, the mean pressure coefficients are lower than for
θ=45° and have a slightly higher variability than those for θ=0°. The

highest values are achieved in zone B, with the maximum value equal to
1.426 at pressure tap #1 (i.e., at the corner near zone A, see Fig. 7a).
The mean pressure coefficients decrease slowly moving from zone B
through zone E, where the minimum value of 0.090 is achieved, and
then increase again in zone C. The standard deviations of the pressure
coefficients follow a trend similar to that of the mean pressure coeffi-
cients (Fig. 7b). In fact, they assume their largest values overall in zone
B, even though the maximum value equal to 0.397 is observed in
pressure tap #64 (i.e., zone E). The standard deviations then gradually
decrease moving from the detachment edge to the other side of the roof,
with the lowest values overall in zone E.

The skewness coefficient assumes its highest positive values near the
detachment edge in zone B, with the maximum value equal to 1.454 at
pressure tap #15 and all values above the Gaussianity threshold of 0.5
(Fig. 7c). The skewness coefficient assumes intermediate positive va-
lues, only few of which are above the Gaussianity threshold of 0.5,
along the two edges that are parallel to the wind flow (i.e., zones A and
D). It reaches the lowest values in zones C and E, with the minimum
equal to−0.249 at pressure tap #83. It is also observed that, in zones C
and E, the skewness coefficient is negative only at a few of the pressure
taps and is higher in absolute value than the Gaussianity threshold of
0.5 only at two pressure taps. The excess kurtosis follows a trend similar
to that of the skewness coefficient, with the highest values in zone B and
the maximum value of 5.345 at pressure tap #15, intermediate values
in zones A and D, and lowest values in zones C and E (Fig. 7d). The
minimum value is equal to −0.143 and is reached at pressure tap #27.
Only three pressure taps, all located in zone C, have negative values of
excess kurtosis. More than half of the pressure taps present an excess
kurtosis higher in absolute value than the Gaussianity threshold of 0.5,
i.e., in most of the roof the pressure coefficient process can be con-
sidered non-Gaussian.

The mean zero-crossing rate presents larger values in zones A, D,
and E and lower values at the two edges orthogonal to the wind flow
(Fig. 7e), with the maximum value equal to 16.997 Hz and the
minimum value equal to 8.632 Hz. The peak factors assume values
higher than 4.0 in almost all the pressure taps, with the exception of 13
pressure taps, of which eight are located in zone C and 5 in zone E
(Fig. 7f). The highest values are reached along the detachment edge in
zone B, where the maximum value is equal to 9.093 at pressure tap #19
(i.e., at the highest point of the roof), and along the two sides parallel to
the wind flow (i.e., zones A and D). The minimum value is equal to
3.573 and is achieved at pressure tap #27 in zone C. For this wind angle
of attack, the overall high values of the peak factors are consistent with
the high values of skewness coefficient and excess kurtosis and indicate
that the pressure coefficient process is non-Gaussian on most of the
roof.

5. Analytical estimates of peak factor statistics

This section briefly describes six different analytical models for the
statistics of the peak factor, which have been proposed in the literature,
namely the Davenport [32], classical Hermite [27,34], revised Hermite
[27], modified Hermite [27], TPP [42], and Liu’s [24] models. The peak
factor statistics considered in this study are: (1) the mean value,
μ T( )g,M ; (2) the standard deviation, σ T( )g,M ; and (3) the α-quantile,
X T( )g

α
,M ; in which α denotes the quantile rank, i.e.,
= ⩽α P g X T[ ( )]T g

α
,M , where ⋯P [ ] denotes the probability of the event

defined in the square brackets; M=D (for Davenport model), H (for
classical Hermite model), rH (for revised Hermite model), mH (for
modified Hermite model), TPP (for TPP model), or L (for Liu’s model);
and T denotes the time interval of reference.

5.1. Davenport model

The Davenport peak factor statistics are based on the assumption
that the underlying process is Gaussian [32]. The distribution of the
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local peaks (i.e., local maxima in time) of a standardized Gaussian
process reduces to the Rayleigh distribution for narrow-band processes
[60]. Davenport peak factor is often employed in wind engineering
practice [52] to estimate the mean extreme value (i.e., the mean value
of the global maximum in time) of wind-induced responses. The sta-
tistics of the Davenport peak factor are given by [32]:

= +μ T β
γ
β

( )g,D (2)

=σ T π
β

( )
6g,D

(3)

= − −X T ν T α( ) 2ln( · ) 2ln( ln )g
α
,D 0 (4)

in which ≈γ 0.5772 is the Euler’s constant, and =β ν T2ln( · )0 . Eq. (4)
is derived here directly from the distribution of the largest peak value
presented in [32].

5.2. Hermite models

The classical, revised, and modified Hermite models belong to the
same family of analytical models based on a translation model using a
third-order Hermite polynomial. The analytical expression of the clas-
sical Hermite model’s mean peak factor was proposed in [34] to ac-
count for non-Gaussianity of wind processes. The model was further
extended to provide an analytical estimate of the standard deviation of
the peak factor in [27]. In order to estimate the quantiles, it is assumed
here that the distribution of the largest peak values is a Gumbel dis-
tribution, which implies a Weibull distribution for the local peaks of the
pressure coefficients, as suggested in [42].
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For Gaussian processes, = = = =γ κ h h 0c c 3 4p p and =k 1; thus Eqs.
(5) and (6) reduce to Eqs. (2) and (3), respectively.

The revised Hermite model is a modification of the classical Hermite
model, in which the expressions for parameters h3 and h4 given in Eq.
(8) are substituted by the values ̂h3 and ̂h4 that minimize the lack-of-fit
errors in skewness and kurtosis of the Hermite model [37,44], which
are given by:

̂ =
⎡

⎣
⎢
⎢

− +

+
⎤

⎦
⎥
⎥

h
γ γ γ

κ6
·

1 0.015| | 0.3

1 0.2
c c c

c
3

2
p p p

p (9)

̂ =
⎡

⎣
⎢
⎢

+ − ⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

−

h
κ γ

κ
(1 1.25 ) 1

10
· 1

1.43c c

c

κ

4

1
3

2 (1 0.1 )
p p

p

cp
0.8

(10)

The analytical solutions for the mean, μ T( )g,rH , and standard de-
viation, σ T( )g,rH , of the peak factor using the revised Hermite model are
given by Eqs. (5) and (6), respectively, by substituting h3 with ̂h3 and h4

with ̂h4, respectively. The expression for the quantile of the revised
Hermite model, X T( )g

α
,rH , is given by Eq. (7) by substituting μ T( )g,H

with μ T( )g,rH and σ T( )g,H with σ T( )g,rH , respectively. It is noteworthy
that the revised Hermite model is valid only for the ranges < <γ0 12cp

and ⩽ <κ γ0 2 /3c c
2
p p . In the case in which these conditions on skewness

coefficient and excess kurtosis are not satisfied, the revised Hermite
model reverts to the classical Hermite model.

The modified Hermite model [45,61] is a modification of the clas-
sical Hermite model, in which the shape parameters ̂c3 and ̂c4 that de-
fine the third-order Hermite polynomial of the translation model are
related to γcp and κcp by

̂ ̂ ̂ ̂ ̂ ̂= + + +γ k c c c c c c·(8 108 · 36 · 6 )c
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Eqs. (11) and (12) cannot be inverted analytically and need to be
solved numerically; however Yang et al. [61] presented an approximate
polynomial solution for ̂c3 and ̂c4 as functions of to γcp and κcp. The
analytical solutions for the mean, μ T( )g,mH , and standard deviation,
σ T( )g,mH , of the peak factor corresponding to the modified Hermite
model are given by Eqs. (5) and (6), respectively, by substituting h3 with

̂c3 and h4 with ̂c4, respectively. Similar to the case of the revised Hermite
model, the expression for the quantile of the modified Hermite model,
X T( )g

α
,rH , is given by Eq. (7) by substituting μ T( )g,H with μ T( )g,mH and

σ T( )g,H with σ T( )g,mH , respectively. The region of applicability of the
modified Hermite model is defined by ̂ ̂ ̂+ − <c c c3 ·(3 1) 03

2
4 4 [41], which

can be approximated in terms of skewness coefficient and excess kur-
tosis as − + ⩽( )γ κ1.25 0c c

2
p p [62]. If these conditions on ̂c3 and ̂c4 or on

γcp and κcp are not satisfied, the modified Hermite model reverts to the
classical Hermite model.

5.3. Translated-Peak-Process (TPP) model

The TPP model assumes that the pressure coefficient’s local peaks
follow a Weibull distribution and, thus, that the distribution of the
largest peak value is a Gumbel distribution [42]. The TPP model uses a
point-to-point mapping between the cumulative distribution function
(CDF) of the local peaks for a Gaussian process, which corresponds to a
Rayleigh distribution, and the CDF of the local peaks of the considered
non-Gaussian process, which corresponds to the assumed Weibull dis-
tribution. This mapping procedure is used to estimate the scale and
shape parameters, ρ and κ, respectively, of the underlying Weibull
distribution, knowing which the statistics of the peak factor can be
determined in closed-form as follows:

= +μ T ρ ν T
γ ρ ν T

ν T
( ) [ ·ln( · )]

·[ ·ln( · ) ]
κ·ln( · )g κ

κ
,TPP 0

1 0
1

0 (13)

=σ T π ρ ν T
ν T

( )
6

[ ·ln( · )]
κ·ln( · )g

κ
,TPP

0
1

0 (14)

= − −X T ρ ν T
ρ ν T

ν T
α( ) [ ·ln( · )]

[ ·ln( · )]
κ·ln( · )

·ln( ln )g
α κ

κ
,TPP 0

1 0
1

0 (15)

5.4. Liu’s model

Liu et al. [24] derived a new moment-based translation model by
defining a modified probability density function (PDF) that is sym-
metric around the median of the original non-Gaussian process. By
ordering the experimental data at different instants of time in
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increasing values = … + …x i m m N( 1, , , 1, , )i , where N is the total
number of recorded values and ⩾i m corresponds to values >x mi x , in
which mx denotes the median of the recorded values, the first four
statistical moments of the modified PDF are obtained as follows:

=μ mx1 (16)
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Using this new PDF, the parameters μ T( )g,new and σ T( )g,new are
calculated using Eqs. (5) and (6), respectively, with h3, h4 and k given
by Eq. (8), where γcp and κcp are substituted with μ3 and −μ 34 , respec-
tively. Finally, the peak factor mean and standard deviation can be
obtained as:

= + −μ T
σ

μ μ T μ μ( ) 1 ·( · ( ) )g
c

g c,L 2 ,new 1
p

p
(20)

=σ T
μ
σ

σ T( ) · ( )g
c

g,L
2

,new
p (21)

It is noted here that Eqs. (17) and (19) are different from those given
in the original paper [24], which contain a typographical error, and
that Eqs. (20) and (21) were newly derived in order to allow for a direct
comparison of peak factor means and standard deviations obtained
from different models.

6. Comparison of experimental and analytical peak factor
statistics

This section presents a comparison between experimentally mea-
sured and analytically estimated statistics of the peak factor for the
square HPR considered in this study. First, a comparison of the different
analytical models is made by evaluating the percentages of experi-
mental peak factors that have smaller values than different analytical
quantiles for an interval of time =T T0 (i.e., for the entire duration of
the recorded signals) at different locations on the roof. Second, the
different analytical models are compared in terms of estimates of the
mean and standard deviation of the peak factors for shorter time in-
tervals. Different error measures are considered and the implications of
using these different error measures are discussed. The goal of this
section is to identify advantages and limitations of the different ana-
lytical models for estimating peak factors for HPRs with respect to lo-
cation on the roof, wind direction relative to the roof, and duration of
the signal. All results are presented only for the Davenport, modified
Hermite, TPP, and Liu’s models out of the six models described before,
i.e., due to space constraints, only the results corresponding to the
modified Hermite model are presented among those of the Hermite
models. This selection was made because the three Hermite models
provided very similar results in all cases and the modified Hermite
model was consistently the most accurate of the three Hermite models
considered here when compared to the experimental peak factors.

6.1. Comparison of peak factor statistics for T = T0

The comparison of the experimental and analytical peak factor
statistics for = =T T 30 s0 (corresponding approximately to a duration
of 30min in full-scale) is performed first for the three wind angles of
attack one at the time, after which some synoptic considerations are
provided.

6.1.1. Wind angle of attack θ = 0°
Fig. 8 shows the analytical estimates of the peak factor mean for a

time interval =T T0 and wind angle θ=0°. These analytical results can
be directly compared to the experimental results for the peak factor gT0
reported in Fig. 5f.

The results reported in Fig. 8a show that the Davenport estimate of
the peak factor mean changes very little with the location of the pres-
sure tap, with slightly higher values at the highest point of the roof
along the edges parallel to the wind flow (i.e., in zones B and C). The
maximum and minimum values are equal to 3.653 and 3.470, respec-
tively. By comparing Fig. 8a and Fig. 5f, it is observed that the Da-
venport peak factor means significantly underestimate the experimental
peak factors in zones A, B, and C, and fail to capture the large peak
factor values at the highest points of the roof in zones B and C.

The analytical estimates of the peak factor mean for the modified
Hermite models are presented in Fig. 8b. The results of the modified
Hermite model are able to reproduce the large values of the experi-
mental peak factors that were observed in the regions where the pres-
sure coefficient process is non-Gaussian, i.e., in zones A, B, and C. The
maximum value of the peak factor mean is equal to 8.750; the minimum
value of the peak factor mean is equal to 3.014.

The TPP estimates of the peak factor mean are shown in Fig. 8c. The
peak factor means have a trend similar to those of the experimental
values, with higher values in zones A, B, and C, and the highest values
near the highest points of the roof in zones B and C. The maximum and
minimum values of the peak factor mean are equal to 6.840 and 3.292,
respectively. It is observed that, even though the TPP model is able to
identify the regions of non-Gaussianity that are characterized by higher
values of the peak factor, it often underestimates the non-Gaussian peak
factors, sometimes even significantly.

The Liu’s model estimates of the peak factor mean are shown in
Fig. 8d. These analytical results present a good agreement with the
experimental peak factors shown in Fig. 5f. Similar to the modified
Hermite and TPP models, the highest values are obtained in zones A, B,
and C. The maximum and minimum values of the peak factor mean are
equal to 9.948 and 2.787, respectively. In the non-Gaussian regions, it is
observed that these results are very close to those obtained using the
modified Hermite model.

It is qualitatively observed that, for =T T0 and θ=0°, the modified
Hermite model provides the best estimates of the experimental peak
factors among all models considered here, closely followed by the Liu’s
model. The TPP model identifies the regions of non-Gaussianity but
generally underestimate the peak factors, whereas the Davenport model
severely underestimates the peak factors in the non-Gaussian regions of
the roof. All models provide very similar results that are close to the
experimentally measured peak factors in the middle and in the leeward
edge of the roof (i.e., in zones D and E), where the pressure coefficient
process can be approximately considered Gaussian.

Fig. 9 shows the analytical estimates of the peak factor standard
deviation (scaled up by a factor equal to 10) corresponding to the Da-
venport, modified Hermite, TPP, and Liu’s models for a time interval

=T T0 and wind angle θ = 0°. The Davenport estimates of the peak
factor standard deviation at the different pressure taps are shown in
Fig. 9a. The standard deviation values change very little with the po-
sition on the roof. The maximum and minimum values are equal to
0.389 and 0.367, respectively, which correspond to coefficients of
variation that are relatively small and slightly higher than 10%.

Fig. 9b reports the peak factor standard deviation estimates ob-
tained using the modified Hermite model. Higher values for the stan-
dard deviation are observed near the highest points of the roof in zones
B and C (where also the peak factor mean is highest and the pressure
coefficient process is strongly non-Gaussian), whereas intermediate
values are observed in zone A and the remainder of zones B and C, and
lower values are observed in most of zones D and E. The maximum
value is equal to 2.121, with coefficients of variation higher than 18%
in highly non-Gaussian regions. The minimum value is equal to 0.155.
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The TPP estimates of the peak factor standard deviation are shown
in Fig. 9c. The peak factor standard deviations have a trend similar to
those of the modified Hermite model, but with a significantly smaller
range, i.e., with higher values in zones A, B, and C and lower values in
zones D and E. The maximum and minimum values of the peak factor
standard deviations are equal to 1.107 and 0.338, respectively, with
coefficients of variation close to about 15% in highly non-Gaussian
regions.

The Liu’s estimates of the peak factor standard deviation are shown
in Fig. 9d. The peak factor standard deviations have a trend similar to
those of the modified Hermite and TPP models, but with larger max-
imum values. The maximum and minimum values of the peak factor
standard deviations are equal to 2.810 and 0.083, respectively.

Fig. 10 compares the experimental values of the peak factors at each
pressure tap with the corresponding analytical estimates of the 90%-
confidence intervals (defined as the interval between the 5% and 95%
quantiles) of the peak factors for the Davenport, modified Hermite,
TPP, and Liu’s models. The numbering of the pressure taps reported on
the horizontal axis of Fig. 10 corresponds to the numbering shown in
Fig. 3. Vertical dashed lines are used to separate the pressure taps in the
five different zones identified as A, B, C, D, and E. The experimental

peak factors are identified by red circular markers for pressure taps
corresponding to (approximately) Gaussian processes and by green
square markers for pressure taps corresponding to non-Gaussian pro-
cesses.

It is observed that the upper and lower bounds of the 90%-con-
fidence intervals based on the Davenport model are almost constant,
with the average value of the 5% quantiles equal to 3.088 and the
average value of the 95% quantiles equal to 4.281. The modified
Hermite model presents confidence intervals that are significantly
wider than those obtained using the Davenport model in zones A, B, C,
and a few pressure taps in zone E. These locations correspond to
strongly non-Gaussian pressure coefficient processes. In zone D and
most of zone E (i.e., where the pressure coefficient processes are ap-
proximately Gaussian), the 90%-confidence intervals become very close
to those estimated using the Davenport model. Similar observations are
made for the TPP and Liu’s models when compared to the Davenport
model’s results. The estimated quantiles are generally lower (particu-
larly the 95% quantile) and the confidence intervals are generally
narrower than those obtained from the modified Hermite model for the
TPP model. By contrast, the Liu’s model provides quantiles that are
generally very close to those of the modified Hermite model, except for

(a) (b) 

(c) (d) 
Fig. 8. Analytical estimates of peak factor mean for =T T0 and = °θ 0 : (a) Davenport model, μg,D; (b) modified Hermite model, μg,mH; (c) TPP model, μg,TPP; and (d)
Liu’s model, μg,L.
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(a) (b) 

(c) (d) 
Fig. 9. Analytical estimates of peak factor standard deviation, scaled up by 10, for =T T0 and = °θ 0 : (a) Davenport model, σg,D; (b) modified Hermite model, σg,mH;
(c) TPP model, σg,TPP; and (d) Liu’s model, σg,L.

Fig. 10. Comparison between experimental peak factors, gT0, and analytical peak factor 90%-confidence intervals for =T T0 and = °θ 0 .
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a few pressure taps where the pressure coefficient process is highly non-
Gaussian, where the 95% quantile obtained from the Liu’s model is
significantly higher than those obtained from the modified Hermite
model.

6.1.2. Wind angle of attack θ = 45°
Similar to the case for θ = 0°, the analytical peak factor means and

standard deviations were investigated also for =T T0 and θ = 45°. The
corresponding maps are not presented here due to space constraints.
From these analytical estimates, it is observed that: (1) the Davenport
model severely underestimates the peak factors in the non-Gaussian
regions of the roof with very small differences of means and standard
deviations in Gaussian and non-Gaussian regions; (2) the analytical
peak factor means obtained using the modified Hermite model provide
the best estimates of the experimental peak factors; (3) the TPP model
can identify the regions of non-Gaussianity but generally underestimate
the peak factors and have a smaller range of variability of the standard
deviations when compared to the Hermite models; (4) the Liu’s model
gives a satisfactory identification of non-Gaussian regions but generally
overestimate the peak factors and presents the largest range of standard
deviations. It is noteworthy that, while non-Gaussianity is observed in
most of the roof for θ = 45°, the values of the peak factors in these non-
Gaussian regions are generally lower than those for θ = 0°, which
suggests a lower level of non-Gaussianity.

Fig. 11 compares the experimental peak factors for =T T0 and θ =
45° with the corresponding analytical estimates of the 90%-confidence
intervals of the peak factor at each pressure tap. Also in this case, the
90%-confidence intervals based on the Davenport model are almost
constant, significantly lower than the experimental values in non-
Gaussian regions, and close to those for = °θ 0 . The Liu’s model gen-
erally presents wider 90%-confidence intervals when compared to other
models, followed by the modified Hermite and the TPP models. The
modified Hermite, TPP, and Liu’s models have significantly wider 90%-
confidence intervals than the Davenport model in zones A, B, C, and
some parts of zone E (i.e., where the pressure coefficient processes are
non-Gaussian); whereas the 90%-confidence intervals for all four
models tend to similar values in zone D and the remainder of zone E
(i.e., where the pressure coefficient processes are approximately
Gaussian). It is also observed that almost all experimental peak factors
are contained within the 90%-confidence intervals obtained using the
modified Hermite and Liu’s models, whereas the TPP 90%-confidence
intervals do not include a significant number of experimental peak
factors.

6.1.3. Wind angle of attack θ = 90°
The analytical peak factor means and standard deviations obtained

for =T T0 and θ = 90° lead to observations that are qualitatively si-
milar to those made for = °θ 0 and = °θ 45 . Also in this case, the cor-
responding maps are not presented here due to space constraints. As for
the previous cases, the Davenport estimates of the peak factor mean are
almost constant for all the pressure taps, with the maximum and
minimum values that are equal to 3.679 and 3.486, respectively. The
modified Hermite estimates of the peak factor mean are close to the
experimentally measured peak factors, particularly in zone B, where the
pressure coefficient processes are highly non-Gaussian, with a max-
imum value equal to 7.653 and a minimum value equal to 3.018. The
TPP estimates of the peak factor mean are overall in good-to-fair
agreement with the experimentally measured peak factors, with the
exception of the highest peak factors, which are significantly under-
estimated by the TPP model. The maximum and minimum values of the
peak factor mean based on the TPP model are equal to 6.397 and 3.140,
respectively. The Liu’s model gives estimates of the peak factor mean
that are very close to and generally slightly higher than those of the
modified Hermite model, with values ranging between 8.349 and
3.054.

Fig. 12 compares the peak factor experimental values and the ana-
lytical estimates of the 90%-confidence intervals of the peak factor at
each pressure tap. Also in this case, the 90%-confidence intervals based
on the Davenport model are almost constant and close to those for the
other wind angles. As observed for other wind angles, the widths of the
90%-confidence intervals in non-Gaussian regions are generally largest
for the Liu’s model, followed by the modified Hermite model and the
TPP model, whereas they are smallest for the Davenport models, for
which they are almost constant and close to those observed in Gaussian
regions (i.e., most of region C). Almost all experimental peak factors are
contained within the 90%-confidence intervals obtained using the
modified Hermite and Liu’s models, whereas the 90%-confidence in-
tervals obtained using the TPP model fail to capture the largest values
of the peak factors.

6.1.4. Synoptic considerations for all wind angles
The empirical distributions of the pressure coefficient local peaks

were investigated at all pressure taps for all wind angles in order to
verify the assumptions made in the calculation of the confidence in-
tervals for the peak factor, i.e., that the pressure coefficient local peaks
follow a Rayleigh distribution in the Davenport model and that they
follow a Weibull distribution in all other models. In all cases, a Rayleigh
and a Weibull distribution were fitted to the experimental data and a
two-sided Kolmogorov-Smirnov test was performed [63].

Fig. 11. Comparison between experimental peak factors, gT0, and analytical peak factor 90%-confidence intervals for =T T0 and = °θ 45 .
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It was found that the Weibull distribution could not be rejected with
a 5% confidence level in 251 cases out of 267 (i.e., in 94.0% of the
cases), whereas the Rayleigh distribution was rejected with a 5% con-
fidence level in all cases. Fig. 13 plots the comparison between the
empirical CDF and the fitted Rayleigh and Weibull distributions relative
to the pressure coefficient local peaks for the case of pressure tap #19
and = °θ 90 . This case corresponds to highly non-Gaussian conditions.
It is observed that the Weibull distribution follows very well the em-
pirical CDF, whereas the Rayleigh distribution shows significant dif-
ferences with the empirical CDF.

These observations confirm that the assumption that the pressure
coefficient local peaks follow a Weibull distribution is reasonable. In
addition, the Rayleigh distribution was found to differ significantly

from the empirical CDF even for cases in which the pressure coefficient
process could be considered approximately Gaussian.

When considering the entire duration of the records (i.e., for
=T T0), the experimental peak factors represent single realizations of

random variables and cannot be directly compared with the peak factor
statistics (i.e., mean and standard deviation) obtained using the dif-
ferent analytical models considered in this study. Thus, in order to
provide a quantitative measure of the overall accuracy of the different
analytical models for the different wind angles, the analytical estimates
of different quantiles X T( )α

M were compared with the recorded experi-
mental values of the peak factors at each pressure tap.

Table 1 reports the ratios R T( )α
M (expressed in percentage) of ex-

perimental peak factors (over all pressure taps for any given wind
angle) that are lower than the analytical quantiles X T( )α

M for =T T0,
M=D, mH, TPP, and L, and α = 95%, 75%, 50%, and 25%. The dif-
ferences between these quantities and the corresponding α values can
be used as a proxy of the overall accuracy of each model in estimating
the statistics of the peak factors. In fact, the closer this ratio is to the
corresponding value of α, the more accurate the corresponding model
can be considered in describing the actual distribution of the peak
factors over the entire roof.

As expected, the Davenport model is the least accurate among the
models investigated in this study. In fact, the values of R T( )α

D 0 are al-
ways significantly lower than α and decrease with increasing wind
angle.

The modified Hermite and Liu’s models are the most accurate
models, even though they tend to overestimate the peak factor values,
as indicated by the fact that the values of R T( )α

mH 0 and R T( )α
L 0 are sys-

tematically higher than the corresponding α, with the only exception of
the case for α = 25% and = °θ 90 for the modified Hermite model. The
TPP model tends to underestimate the peak factor values, as indicated
by the fact that <R T α( )α

TPP 0 for all values of α and all wind angles.

Fig. 12. Comparison between experimental peak factors, gT0, and analytical peak factor 90%-confidence intervals for =T T0 and = °θ 90 .

Fig. 13. Cumulative distribution function (CDF) of pressure coefficient peaks at
pressure tap #19 for θ = 90° (highly non-Gaussian case).

Table 1
Ratios R T( )α

M 0 (in percentage) of experimental peak factors lower than X T( )α
M 0 .

θ D mH TPP L

95% 75% 50% 25% 95% 75% 50% 25% 95% 75% 50% 25% 95% 75% 50% 25%

0° 57.3 39.3 15.7 2.2 100.0 85.4 74.2 57.3 87.6 61.8 32.6 6.7 100.0 93.3 68.5 27.0
45° 37.1 15.7 2.2 0.0 94.4 69.7 50.6 29.2 66.3 39.3 16.9 4.5 93.3 82.0 59.6 29.2
90° 28.1 4.5 0.0 0.0 98.9 75.3 39.3 12.4 70.8 32.6 10.1 1.1 100.0 94.4 66.3 25.8
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6.2. Comparison of peak factor statistics for T<T0

A comparison of the experimental and analytical peak factor sta-
tistics for time intervals that are shorter than the entire pressure coef-
ficients’ records was performed to further investigate the relative ac-
curacy of the analytical models considered in this study. This additional
comparison allows a direct comparison of the peak factor’s statistics
evaluated using analytical models and experimental data.

Three smaller time interval lengths were considered, namely
= =T T /6 5 s1 0 (corresponding to approximately 300 s of equivalent-

time duration for a full-scale structure), = =T T /30 1 s2 0 (corresponding
to approximately 60 s of equivalent-time duration for a full-scale
structure) and = =T T /60 0.5 s3 0 (corresponding to approximately 30 s
of equivalent-time duration for a full-scale structure). The lengths of the
shorter intervals were selected so that the entire signal records could be
easily divided into a sufficient number of shorter signals of equal length
(i.e., into sub-intervals), which could provide reliable estimates of the
experimental peak factor means and standard deviations. The experi-
mental peak factors were recorded for each sub-interval and were used
to estimate at each pressure tap the sample mean and standard devia-
tion of the peak factor corresponding to the shorter signal duration,
based on six, 30, and 60 samples for T1, T2, and T3, respectively. It is
noted here that the time intervals considered in this study are shorter
than those conventionally used to evaluate maximum wind pressures in
wind engineering practice (which are often 10-min or 1-h durations).
However, the goal of the present study is to investigate the relative
accuracy of different analytical approximations for peak factor statistics
when considering different time durations, which can be achieved in-
dependently from the specific values of the time durations considered.
In fact, once the accuracy of a given analytical method is verified over a
range of different time durations, this analytical method can be used to
estimate the pressure coefficients corresponding to any time duration of
interest with the same accuracy.

By comparing the analytical peak factor statistics of different
models for different time durations, it is observed that the peak factor
mean increases monotonically for increasing time durations. The peak
factor standard deviation strictly decreases for increasing time dura-
tions everywhere for the Davenport model and in Gaussian regions for
all other models, whereas the peak factor standard deviation does not
have a monotonic behavior as a function of the time duration in regions
of high non-Gaussianity for all models other than the Davenport model.

The overall accuracy of the different analytical models for the dif-
ferent wind angles was evaluated by estimating the following four
different errors for the peak factor means and standard deviations:

(1) the average difference over all the pressure taps between the ana-
lytical and experimental estimates of means (ε1) and standard de-
viations (δ1), hereafter referred to as “average error”:
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(2) the root mean squared difference over all the pressure taps between
the analytical and experimental estimates of means (ε2) and stan-
dard deviations (δ2), hereafter referred to as “root mean squared
error” (RMSE):
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(3) the square root of the variation of the mean squared error proposed
in [47] for means (ε3) and standard deviations (δ3), hereafter re-
ferred to as “modified root mean squared error” (mRMSE):
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and SEμ
i( ) and SEσ

i( ) denote the standard errors for the mean and
standard deviation, respectively, at pressure tap i;

(4) the percentage average error ratio over all the pressure taps used in
[46] for means (ε4) and standard deviations (δ4), hereafter referred
to as “percentage average error ratio” (PAER):
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These errors were derived from the literature as they are re-
presentative of different selections made by different authors. It is noted
here that: (1) only few studies in the literature consider the errors on
the peak factor standard deviations [42]; (2) only few studies in-
vestigate the overall accuracy of different models on an entire roof
[46,47]; and (3) the authors were not able to identify any study in the
literature that compared the results obtained from different error de-
finitions. The average errors and RMSE are those more commonly used
in the literature; however, they present some limitations. In particular,
average errors are intuitive and clearly indicate if a model tends to
underestimate or overestimate the peak factor statistics; however, they
tend to cancel out large errors in opposite directions (i.e., under-
estimations and overestimations) that are averaged out over many
different pressure taps. RMSEs provide an average difference between
experimental and analytical results, which provide a better information
on how different are analytical and experimental results on the single
pressure tap, but loses the information regarding underestimations or
overestimations. Both types of errors are affected by the quality of the
experimental data, i.e., by the number of samples available to estimate
the sample mean and sample standard deviations. The mRMSE was
defined here by taking the square root of the error proposed in [47] in
order to obtain a quantity with the same dimensions of the average
errors and the RMSEs. This error measure minimizes the effects of small
sampling size in the experimental data and, thus, can be considered a
more reliable error measure than average errors and RMSEs over dif-
ferent time durations. It is noted here that the RMSEs tend to the
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mRMSEs when the experimental sampling size is sufficiently large. Fi-
nally, the PAERs provide information on the relative errors, which is
very intuitive but may be misleading when the peak factor values vary
over a wide range, e.g., in the case of roofs with both approximately
Gaussian and highly non-Gaussian regions such as those considered in
this study.

Table 2 reports the peak factor mean’s error statistics averaged over
all pressure taps for the different time intervals, wind angles, and
models considered in this study. For each case, the smallest error in
absolute value is highlighted in bold fonts. It is observed that all
methods tend to underestimate the overall peak factor means (as in-
dicated by the negative values of the average errors for all time inter-
vals and wind angles), and this underestimation is most severe in the
case of the Davenport model, as expected. The modified Hermite and
Liu’s models appear to be similarly accurate when considering the
average error; however, when other error measures are considered,
these errors for the Liu’s model are significantly larger than those for
the modified Hermite model and are comparable to or slightly higher
than those obtained using the TPP model. The PAER are contained
between 5.0% and 9.2% for the modified Hermite, TPP, and Liu’s
models, indicating an accuracy generally acceptable for engineering
applications; whereas they are larger for the Davenport model, with
values contained between 12.8% and 20.5%. Overall, the modified
Hermite model is observed to provide the best estimates of the peak
factor means in almost all cases according to all error measures.
However, different error measures appear to provide different indica-
tions on the relative accuracy of the different models for different time
durations, e.g., by looking at average errors alone, it would be difficult

to identify which model between the modified Hermite and Liu’s ones is
most accurate. It also appears that the mRMSE is the most consistent,
among the error measures considered in this study, in identifying the
modified Hermite model as the most accurate model overall. Finally,
the errors for = °θ 45 are consistently higher than those for other angles
for each error measure considered here.

Table 3 reports the peak factor standard deviation’s error statistics
averaged over all pressure taps for the different time intervals, wind
angles, and models considered in this study. For each case, the smallest
error in absolute value is highlighted in bold fonts.

It is observed that the Davenport model mostly underestimates the
peak factor standard deviations, as indicated by the predominant ne-
gative values of the corresponding average errors, whereas the modified
Hermite and Liu’s models tend to overestimate overall the peak factor
standard deviations. By comparing the results corresponding to all error
measures, the TPP model appears to provide the best overall estimates
of the peak factor standard deviations. However, similar to the ob-
servations made for the peak factor mean’s errors, different error
measures give somewhat different indications on the relative accuracy
of the different models for different time durations. For example, the
PAER indicates that the Davenport model is the most accurate model
overall in estimating the peak factor standard deviation for T= T3,
which is a counterintuitive and potentially misleading conclusion. In
fact, after a closer inspection of the relative absolute errors at each
single pressure tap, it was concluded that this result stems from the fact
that the PAER systematically discounts the errors in highly non-
Gaussian regions (which are larger for the Davenport model when
compared to the other models) and amplifies the errors in

Table 2
Peak factor mean’s error statistics averaged over all pressure taps for T=T1, T2,
and T3.

T θ D mH TPP L

ε1
Average error

T1 0° −0.579 −0.027 −0.186 −0.037
45° −0.732 −0.015 −0.295 −0.011
90° −0.858 −0.012 −0.296 0.017

T2 0° −0.376 −0.056 −0.140 −0.070
45° −0.444 −0.046 −0.183 −0.054
90° −0.509 −0.042 −0.183 −0.040

T3 0° −0.342 −0.104 −0.176 −0.115
45° −0.375 −0.083 −0.191 −0.091
90° −0.402 −0.061 −0.180 −0.060

ε2
RMSE

T1 0° 0.873 0.236 0.335 0.252
45° 0.885 0.365 0.475 0.442
90° 1.024 0.250 0.390 0.317

T2 0° 0.444 0.224 0.201 0.247
45° 0.491 0.253 0.273 0.298
90° 0.551 0.197 0.229 0.227

T3 0° 0.367 0.227 0.217 0.243
45° 0.391 0.236 0.254 0.265
90° 0.417 0.196 0.214 0.216

ε3
mRMSE

T1 0° 0.400 0.045 0.039 0.045
45° 0.326 0.136 0.169 0.151
90° 0.445 0.036 0.082 0.032

T2 0° 0.243 0.087 0.092 0.099
45° 0.275 0.123 0.153 0.150
90° 0.311 0.056 0.097 0.069

T3 0° 0.227 0.125 0.128 0.137
45° 0.241 0.138 0.163 0.163
90° 0.256 0.077 0.111 0.092

ε4
PAER

T1 0° 14.2% 5.6% 6.5% 5.6%
45° 18.0% 6.7% 9.2% 8.3%
90° 20.5% 5.0% 7.8% 6.2%

T2 0° 12.8% 6.7% 6.4% 7.1%
45° 14.7% 6.7% 7.2% 7.7%
90° 16.6% 5.4% 6.6% 6.1%

T3 0° 13.5% 7.9% 7.9% 8.4%
45° 14.3% 7.4% 8.0% 8.3%
90° 15.3% 6.4% 7.3% 7.0%

Table 3
Peak factor standard deviation’s error statistics averaged over all pressure taps
for T=T1, T2, and T3.

T θ D mH TPP L

δ1
Average error

T1 0° −0.087 0.152 0.037 0.188
45° −0.275 0.075 −0.136 0.114
90° −0.305 0.109 −0.118 0.179

T2 0° −0.017 0.203 0.112 0.234
45° −0.122 0.192 0.022 0.226
90° −0.168 0.205 0.025 0.265

T3 0° 0.207 0.298 0.217 0.329
45° 0.189 0.283 0.130 0.317
90° 0.149 0.301 0.140 0.362

δ2
RMSE

T1 0° 0.438 0.257 0.316 0.271
45° 0.552 0.327 0.448 0.287
90° 0.545 0.277 0.363 0.297

T2 0° 0.311 0.210 0.196 0.254
45° 0.296 0.230 0.199 0.282
90° 0.328 0.214 0.144 0.293

T3 0° 0.267 0.297 0.236 0.353
45° 0.225 0.297 0.191 0.361
90° 0.222 0.302 0.159 0.394

δ3
mRMSE

T1 0° 0.095 0.109 0.079 0.113
45° 0.094 0.140 0.081 0.117
90° 0.079 0.105 0.054 0.137

T2 0° 0.172 0.098 0.075 0.103
45° 0.140 0.119 0.071 0.115
90° 0.165 0.091 0.029 0.120

T3 0° 0.171 0.194 0.147 0.241
45° 0.122 0.188 0.102 0.243
90° 0.120 0.180 0.075 0.267

δ4
PAER

T1 0° 55.7% 59.2% 54.5% 56.8%
45° 46.0% 56.5% 44.8% 49.7%
90° 39.7% 47.5% 35.5% 49.2%

T2 0° 32.9% 38.5% 31.5% 39.9%
45° 28.7% 34.2% 24.5% 36.8%
90° 23.4% 32.3% 17.1% 36.9%

T3 0° 35.2% 50.6% 42.1% 52.9%
45° 28.4% 44.2% 29.2% 46.8%
90° 18.4% 43.3% 22.9% 48.6%

F. Rizzo et al. Engineering Structures 173 (2018) 313–330

328



approximately Gaussian regions (which are similar among different
models). Also in this case, the mRSME appears to provide the most
consistent results. Thus, it is suggested that the mRSME should be used
when comparing the results obtained from different models over a large
number of pressure taps, particularly when a small sample size is used
to estimate experimentally the statistics of the pressure coefficient peak
factors.

7. Conclusions

This paper investigates the statistics of the pressure coefficients and
their peak factors in hyperbolic paraboloid roofs (HPRs), with parti-
cular attention to the characterization of the non-Gaussian properties of
the peak factors as functions of the position on a square HPR and the
relative direction of the wind. Experimental results for wind tunnel tests
on a scaled model of a building with a square HPR are reported for
three different wind angles of attack (i.e., θ = 0°, 45°, and 90°).

The pressure coefficient processes at different locations on the roof
were identified as (approximately) Gaussian or non-Gaussian based on
the values of their skewness coefficient and excess kurtosis. For θ = 0°
(i.e., for a wind angle of attack parallel to the hogging direction of the
roof), the pressure coefficient processes were identified as non-Gaussian
along the detachment edge and the two edges that are parallel to the
direction of the wind, and as approximately Gaussian elsewhere. The
largest values of the skewness coefficients and excess kurtosis were
achieved near the highest points of the roof, i.e., near the middle of the
two edges parallel to the direction of the wind. For θ = 45° (i.e., for a
wind direction that is incident to the corner of the roof), the pressure
coefficient processes were classified as non-Gaussian along the two
detachment edges (one parallel to the hogging and the other to the
sagging direction), along the other edge parallel to the sagging direc-
tion, and in a significant portion of the interior of the roof close to the
two detachment edges. For θ = 90° (i.e., for a wind direction that is
parallel to the sagging direction of the roof), the pressure coefficient
processes were highly non-Gaussian along the detachment edge and the
two edges parallel to the wind directions, had a non-negligible level of
non-Gaussianity in approximately half of the interior of the roof (i.e.,
behind the detachment edge until approximately the middle of the
roof), and were approximately Gaussian elsewhere. These observations
were confirmed by the values of the experimental peak factors obtained
from the entire record duration = =T T 30 s0 (corresponding to ap-
proximately 30min of pressure coefficient’s record for a full-scale
structure), which were significantly higher in the regions identified as
non-Gaussian than in those identified as approximately Gaussian for all
considered wind angles.

The analytical estimates of peak factors’ statistics were calculated
and compared with the corresponding experimental estimates by using
six different analytical models, namely, the Davenport (D), classical
Hermite (H), revised Hermite (rH), modified Hermite (mH), Translated-
Peak-Process (TPP), and Liu’s (L) models. This investigation directly
compared the experimental and analytical estimates of different
quantiles for the entire duration of the experimental records. It was
observed that the modified Hermite and the Liu’s models generally
provided the most accurate estimates of the peak factors’ quantiles,
whereas the TPP model generally slightly underestimated the peak
factors values and the Davenport model strongly underestimated the
peak factors values. Based on the results of a two-sided Kolmogorov-
Smirnov test, it was also shown that the pressure coefficient local peaks
(i.e., the local maxima in time of the pressure coefficient’s experimental
records) generally followed a Weibull distribution, whereas the
Rayleigh distribution was found to differ significantly from the em-
pirical cumulative distribution function even for cases in which the
pressure coefficient process could be considered approximately
Gaussian.

Finally, the experimental and analytical peak factor means and
standard deviations were compared for three different time durations

obtained by subdividing the experimental records into smaller sub-
intervals. The accuracy of the analytical estimates was investigated for
three different wind angles of attack and four different error measures.
It was observed that the modified Hermite model provided the most
accurate estimates of the peak factor means overall, whereas the TPP
model presented the most accurate estimates of the peak factor stan-
dard deviations overall. It was also observed that different error mea-
sures could lead to different (sometimes conflicting) conclusions when
investigating different time durations. Among the different error mea-
sures considered in this study, the modified root mean squared error
appeared to be the most reliable error measure, because it was able to
reduce the effects of limited experimental sample sizes on the accuracy
of the experimental estimates of peak factor means and standard de-
viations. Thus, it is suggested to use this error measure when assessing
the accuracy of analytical models to estimate the peak factor statistics
over different pressure taps.

The study presented in this paper represents a first step toward the
definition of appropriate ranges and calculation methods for peak fac-
tors to be employed in the analysis and design of HPRs commonly used
as cost-effective tensile structures. The present research investigated the
peak factor statistics only for a single geometry (square roof) under a
specified turbulence condition. Further research is needed to generalize
the conclusions reported in this paper, e.g., to different geometrical
configurations (e.g., roof curvature and building height), different
shapes (e.g., rectangular and circular footprints), and different turbu-
lence conditions.
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